<span>s=2.7 centimeters = 0.027 meters
t=3.9 milliseconds = 0.0039 seconds
s=(1/2)a*t^2
so
a=(2.7*2)/(0.0039)^2
= 355,029.58 m/s^2
a=355,029.58 m/s^2 = 355.02958 km / s^2</span>
The fundamental frequency of the tube is 0.240 m long, by taking air temperature to be
C is 367.42 Hz.
A standing wave is basically a superposition of two waves propagating opposite to each other having equal amplitude. This is the propagation in a tube.
The fundamental frequency in the tube is given by

where, 
Since, T=37+273 K = 310 K
v = 331 m/s

Using this, we get:

Hence, the fundamental frequency is 367.42 Hz.
To learn more about Attention here:
brainly.com/question/14673613
#SPJ4
Answer: Force applied by trampoline = 778.5 N
<em>Note: The question is incomplete.</em>
<em>The complete question is : What force does a trampoline have to apply to a 45.0 kg gymnast to accelerate her straight up at 7.50 m/s^2? note that the answer is independent of the velocity of the gymnast. She can be moving either up or down or be stationary.
</em>
Explanation:
The total required the trampoline by the trampoline = net force accelerating the gymnast upwards + force of gravity on her.
= (m * a) + (m * g)
= m ( a + g)
= 45 kg ( 7.50 * 9.80) m/s²
Force applied by trampoline = 778.5 N
Answer:
Explanation below.
Explanation:
It should be understood that transparency is caused through or by the transmission of light waves. This means that, If or when the energy known as the vibrational energy of a light wave is passed through the object, then the object appears clear, or transparent. And when or If the energy only causes vibrations in the surface before reflecting off the object, then the object will appear opaque, that is nontransparent.
Answer:
Halfway between B and A on the return leg.
Explanation:
Your average SPEED for the entire trip will equal your constant speed as the time and distance increase at proportionate rates.
Your average VELOCITY will equal your constant speed while you travel from A to B because time and displacement are increasing at proportionate rates.
When you turn around at B to return, your Displacement is now decreasing while your travel time continues to increase, so your average velocity decreases.
Lets say the distance from A to B is 90 km and your constant speed is 30 km/hr.
your average speed is 30 km/hr because you took 6 hrs to travel 180 km
We want to find your position when your average velocity is 30/3 = 10 km/hr
it took 3 hrs to go 90 km from A to B. Let t be the time lapsed since turn around
your displacement is given by d = 90 - 30(t)
and your total time of travel is t + 3 hrs
v = d/t
10 = (90 - 30t) / (t + 3)
10(t + 3) = (90 - 30t)
10t + 30 = 90 - 30t
40t = 60
t = 1.5 hrs
This will occur when you are halfway between B and A