Answer:
<h2>
206.67N</h2>
Explanation:
The sum of force along both components x and y is expressed as;

The magnitude of the net force which is also known as the resultant will be expressed as 
To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.
Given the position of the object along the x-component to be x = 6t² − 4;


Similarly,



Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N
Answer:
d. 50 C
Explanation:
In this problem, we have to add 800 ml of water at 20 Celsius to 800 ml of water at 80 Celsius.
According to the 2nd law of thermodynamics, heat transfers from hot to cold temperature.
The quantity of both the different waters is equal so this makes it very easy. All we have to do is find the mean of both the temperatures:
Final temperature = (20 C + 80 C)/2
= 50 Celsius
4x + 4 < 4x + 3 (expand it)
4 < 3 (cancel 4x on both sides)
Since 4 < 3 is not true there is no solution.
Answer: NO SOLUTION.
A. 314 because when you use the formula for the GPE ; GPE=MGH or means mass times gravity time height (4x8x9.8) and thats equivalent to 313.6 which rounds up to 314. Hope it helps