Answer:
The electric field intensity is <u>30000 N/C.</u>
Explanation:
Given:
Magnitude of the point charge is, 
Distance of the given point from the point charge is, 
Electric field intensity is directly proportional to the magnitude of point charge and inversely proportional to the square of the distance of the point and the given charge.
Therefore, electric field intensity 'E' at a distance of 'd' from a point charge 'q' is given as:

Plug in
. Solve for 'E'.

Therefore, the electric field intensity at a point 3 cm from the point charge is 30000 N/C.
You need to move the decimal point between the six and nine. 6.9 X 10^-4
Answer:
10,000 eV
Explanation:
According to the law of conservation of energy, the kinetic energy gained by the electron is equal to its change in electric potential energy:

where:
K is the kinetic energy of the electron
is the magnitude of the charge of the electron
is the potential difference through which the electron has been accelerated
For this electron in the TV, we have

Therefore, the kinetic energy of the electron in electronvolts is

Mold
Explanation:
A mold is a cavity that is left behind in the rock after an organism hard part has been dissolved. These are important fossils that useful in relative dating.
- Some hard parts of organism are preserved in form of molds in soft sediments.
- The outline and important details of the hard part is preserved when the mold dissolves away.
- Fossil molds are representative on the internal outline of the hard parts of organisms.
- They are usually recognized as a part of body fossil in a section.
learn more:
Fossils brainly.com/question/7382392
#learnwithBrainly
Answer:
The electric current in the wire is 0.8 A
Explanation:
We solve this problem by applying the formula of the magnetic field generated at a distance by a long and straight conductor wire that carries electric current, as follows:

B= Magnetic field due to a straight and long wire that carries current
u= Free space permeability
I= Electrical current passing through the wire
a = Perpendicular distance from the wire to the point where the magnetic field is located
Magnetic Field Calculation
We cleared (I) of the formula (1):
Formula(2)

a =8cm=0.08m

We replace the known information in the formula (2)

I=0.8 A
Answer: The electric current in the wire is 0.8 A