Answer:
v=6.05 m/s
Explanation:
Given that,
Th initial velocity of the lander, u = 1.2 m/s
The lander is at a height of 1.8 m, d = 1.8 m
We need to find the velocity of the lander at impact. It is a concept based on the conservation of mechanical energy. So,

v is the velocity of the lander at the impact
g is the acceleration due to gravity on the surface of Mars, which is 0.4 times that on the surface of the Earth, g = 0.4 × 9.8 = 3.92 m/s²
So,

So, the velocity of the lander at the impact is 6.05 m/s.
Answer:
the voltage across each resistor is one third of the battery voltage
Explanation:
In a series circuit, the current is constant throughout the circuit, so the battery voltage is equal to the sum of the voltage drop in each part of the series circuit.
V = i (R₁ + R₂ + R₃)
in the exercise indicate that all resistance has the same value
R₀ = R₁ = R₂ = R₃
V = i 3 R₀
V
= 3 V₀
V₀ = i R₀
V₀= V / 3
the voltage across each resistor is one third of the battery voltage
Answer:. Option c
Explanation: the speed of an electromagnetic wave is simply the vector product of the magnetic field and the electric field.
The direction of the velocity is the direction of the electromagnetic wave.
The wave is already moving towards the negative y axis (-j) and the magnetic field is already pointing towards the positive x axis (i)
From cross product of unit vectors
i × j = k
i × k = - j
With the second identity, we can see that the electric field will be pointing towards the positive of the x axis (k).
Option c is validated
The diameter of a ball is 3.8 cm.
Because 400/3.8 = 105.26,
each dimension of 400 m can accommodate 105 balls.
Similarly, because 300/3.8 = 78.95,
each dimension of 300 m can accommodate 78 balls.
The total number of balls is 105*105*78 = 859,950
Answer: 859,950 balls