Answer:
0 N, 3.49 m/s
Explanation:
Draw a free body diagram for the bucket at the top of the swing. There are two forces acting on the bucket: weight and tension, both downwards.
If we take the sum of the forces in the radial direction, where towards the center is positive:
∑F = ma
W + T = m v² / r
The higher the velocity that Rony swings the bucket, the more tension there will be. The slowest he can swing it is when the tension is 0.
W = m v² / r
mg = m v² / r
g = v² / r
v = √(gr)
Given that r = 1.24 m:
v = √(9.8 m/s² × 1.24 m)
v = 3.49 m/s
F has direct relation with a
then doubling F cause acc. to get double i:e 6×2=12
Answer: acceleration due to gravity of planet a would be twice that of planet b. Given that the radius are thesame.
Explanation:
Acceleration due to gravity is as a result of the gravitational force of attraction of a planet to its centre.
g = GM/r^2
Where;
g = acceleration due to gravity
G = gravitational constant
M = mass of planet
r = radius of planet
Given that the two planet have the same radius, if the mass of planet a is twice the mass of planet b the the acceleration due to gravity of planet a would be twice that of planet b, because acceleration due to gravity is directly proportional to the mass of the planet.
Answer:
This slide shows the three forces that act on a baseball in flight. The forces are the weight, drag, and lift. Lift and drag are actually two components of a single aerodynamic force acting on the ball. Drag acts in a direction opposite to the motion, and lift acts perpendicular to the motion
The movements of the tectonic plates