Answer:
a. 5.36x10⁻⁴ g/mL
b. 4.29x10⁻⁵ g/mL
Explanation:
As the units for concentration are not specified, I'll respond using g/mL.
a. We <em>divide the sample mass by the final volume</em> in order to <u>calculate the concentration</u>:
- 0.268 g / 500 mL = 5.36x10⁻⁴ g/mL
b. We can use C₁V₁=C₂V₂ for this question:
- 8.00 mL * 5.36x10⁻⁴ g/mL = C₂ * 100.00 mL
Answer:
12.01
Explanation:
(12.00*98.93% + 13*1.07%) /100% = 12.01
Answer: v2=331.289mL
Explanation:
Formula for ideal gas law is p1v1/T1=p2v2/T2
P1=782.3mmHg
P2=769mmHg at STP
V1=362.4mL
V2=?
T1=273+34.4=307.4k
T2=273k at STP
Then apply the formula and make v2 the subject of formula
V2= 782.3×362.4×273/760×307.4
V2=77397006.96/233624
V2=331.289mL
The answer to this question would be: BaCl 2
Barium is an alkali metal with 56 atomic number. Barium located in the group 2 of the periodic table because it has 2 valence electrons. Chlorine is a nonmetal that has 1 valence electron. When react, it would need 2 chlorine for each barium as the valence electron of barium is twice the chlorine.
Answer:
The Net reaction is
-

-

-
Explanation:
From the Question we are told that the buffers are
and 
When NaOH is added the Net ionic reaction would be
-

-

-