All elements in their standard states (oxygen<span> gas, solid carbon in the form of graphite, etc.) have a standard </span>enthalpy of formation<span> of </span>zero<span>, as there is no change involved in their </span>formation<span>.</span>
Answer:
Vol of 4 moles CO₂(g) at STP = 89.6 Liters
Explanation:
STP
P = 1 Atm
V =
T = 0°C = 273 K
n = 4 moles
R = 0.08206 L·Atm/mol·K
Using Ideal Gas Law PV = nRT => V = nRT/P
V = (4 moles)(0.08206 L·Atm/mol·K)(273 K)/(1 Atm) = 89.6 Liters
<u>Answer:</u> The molality of magnesium chloride is 1.58 m
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute (magnesium chloride) = 75.0
= Molar mass of solute (magnesium chloride) = 95.21 g/mol
= Mass of solvent = 500.0 g
Putting values in above equation, we get:

Hence, the molality of magnesium chloride is 1.58 m
Q1: sort your numbers into numerical order so you can determine the highest and lowest measured values. and then subtract the lowest measured value from the highest measured value. Now determine that the answer is the precision.
Q2: In one meter there are 100 centemeter. Now you got 5.8 miles per hour which will become 580 centemeter per hour. In addition, there are 60 minutes in an hour. Based on what we know, 580 centemeters per hour will and should become 580/60 cm/min
A chemestretic equation equation which is formed by h20 mc square hydrogen peroxide and the equation of cf6c7bu7c
Hope it helped