Answer:
Pentan-2-ol
Explanation:
On this reaction, we have a <u>Grignard reagent</u> (ethylmagnesium bromide), therefore we will have the production of a <u>carbanion</u> (step 1). Then this carbanion can <u>attack the least substituted carbon</u> in the epoxide in this case carbon 1 (step 2). In this step, the epoxide is open and a negative charge is generated in the oxygen. The next step, is the <u>treatment with aqueous acid</u>, when we add acid the <u>hydronium ion</u> (
) would be produced, so in the reaction mechanism, we can put the hydronium ion. This ion would be <u>attacked by the negative charge</u> produced in the second step to produce the final molecule: <u>"Pentan-2-ol".</u>
See figure 1
I hope it helps!
Answer:
63.5 w isvthebanswerok is th answer
I don't know how well known/accepted this is (it's in my textbook so I'm guessing it's right), but Sulphur has two forms - the alpha and beta forms ,apparently gamma sulphur exists as well.
The alpha form is rhombic, yellow in color and has a MP of 385.8 K. The beta form is colorless and has a MP of 393 K and is formed by melting rhombic sulphur and cooling it till a crust forms on top. Poke a hole and pour out the liquid inside and you get beta sulphur. The transition point is 369K - below it, alpha sulphur is stable and above it, beta sulphur is stable. Both have helped. I had to pull out an old textbook and that's something that I don't usually do.