1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
4 years ago
12

Find the solution of this system of equations 2x-2y=-12 4x-7y=-15

Mathematics
1 answer:
ad-work [718]4 years ago
6 0
2x - 2y = -12
- 2y = -2x - 12
y = x + 6

4x - 7 (x + 6) = -15
4x - 7x - 42 = -15
-3x - 42 = -15
-3x = 27
x = -9

y = -9 + 6
y = -3

(-9 , -3) is the solution
You might be interested in
I’m so confused I need help please!!
shutvik [7]

Answer:

5. 9 8. 2\sqrt{10}

Step-by-step explanation:

a²+b²=c²

so for #5 12²+b²=15²

144+b²=225 (subtract 144 from both sides)

b²=81

b=9

For #8

9²+b²=11²

81+b²=121 (subtract 81 from both sides)

b²=40

b=\sqrt{40}

\sqrt{40}=

2\sqrt{10}

6 0
3 years ago
Read 2 more answers
Dobby the house-elf has dropped all his socks on the floor in the middle of the night! He has 30 red socks, 22 gold socks and 14
Semenov [28]
Only 4 because the only way he cant get a pair is if he picks up a different colour to the previous sock, so by the fourth he will have picked up at two of at least one colour

3 0
3 years ago
WILL GIVE 30 points a scatter plot and a possible line of best fit is shown is the line of best fit accurate for the data shown
Romashka [77]
I think It is 2. it makes the most sense to me
5 0
3 years ago
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
3 years ago
What will your balance be on an investment of $7000 at 2% for 4 years compounded annually.
e-lub [12.9K]
Your balance would be 35, I think
4 0
3 years ago
Other questions:
  • Bonita is testing prototype model rocket engines. To be considered a successful launch, the rocket must reach a height of at lea
    12·2 answers
  • Help me plzzzzzzzzzzzzzzzz
    14·1 answer
  • If m&lt;13=m&lt;15=m&lt;7, what conclusions can you make about lines a, b, c, and d?
    13·1 answer
  • HELP U GUYS. For a fundraiser, Alex sold large boxes of oranges for $9 each and small boxes of oranges for $5 each. if he sold 1
    13·1 answer
  • Polynomial in standard form c^2(c^2-10c+25)
    12·1 answer
  • It asks to simplify the expression​
    14·1 answer
  • slope and y-intercept from graphs, I don't know if I am right and I don't know how to finish it even tho I have noted, can someo
    12·2 answers
  • A school-bus is dropping students off after school. When the bus left the
    7·2 answers
  • Write three hundred and ninety six million two hundred and forty two thousand and two as a numeral
    6·2 answers
  • 200+50+9=259 place value
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!