1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
3 years ago
7

Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0

Mathematics
1 answer:
andreev551 [17]3 years ago
5 0

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

You might be interested in
If 2(4x + 3)/(x - 3)(x + 7) = a/x - 3 + b/x + 7, find the values of a and b.
zmey [24]

Answer:

a=3 and b=5.

Step-by-step explanation:

So I believe the problem is this:

\frac{2(4x+3)}{x-3}(x+7)}=\frac{a}{x-3}+\frac{b}{x+7}

where we are asked to find values for a and b such that the equation holds for any x in the equation's domain.

So I'm actually going to get rid of any domain restrictions by multiplying both sides by (x-3)(x+7).

In other words this will clear the fractions.

\frac{2(4x+3)}{x-3}(x+7)}\cdot(x-3)(x+7)=\frac{a}{x-3}\cdot(x-3)(x+7)+\frac{b}{x+7}(x-3)(x+7)

2(4x+3)=a(x+7)+b(x-3)

As you can see there was some cancellation.

I'm going to plug in -7 for x because x+7 becomes 0 then.

2(4\cdot -7+3)=a(-7+7)+b(-7-3)

2(-28+3)=a(0)+b(-10)

2(-25)=0-10b

-50=-10b

Divide both sides by -10:

\frac{-50}{-10}=b

5=b

Now we have:

2(4x+3)=a(x+7)+b(x-3) with b=5

I notice that x-3 is 0 when x=3. So I'm going to replace x with 3.

2(4\cdot 3+3)=a(3+7)+b(3-3)

2(12+3)=a(10)+b(0)

2(15)=10a+0

30=10a

Divide both sides by 10:

\frac{30}{10}=a

3=a

So a=3 and b=5.

4 0
3 years ago
Read 2 more answers
Complete the proof by providing the missing statement and reasons
Fittoniya [83]

Answer:

2. angle bisector splits into even halves

Step-by-step explanation:

that's all i can assist with sorry, proofs still confuse me!

3 0
3 years ago
What is 732 millimeters in meters
Schach [20]
7.32 meters. i hope this helps
8 0
3 years ago
Read 2 more answers
NEED ANSWERS ASAP PLEASE
WITCHER [35]

Answer:

the first one is 4 and 5

Step-by-step explanation:

the second one is 45 because 15+15+15 is 45, you get 15 by the square root of 225

4 0
3 years ago
Read 2 more answers
PLEASE HELP, algebra 1
podryga [215]
By intuition, the function of y with respect to x will be:

y = 4x

You can prove this by substitute in each pair of values of x and y

So the constant of relationship is 4
4 0
3 years ago
Other questions:
  • Solve the following inequality. Then place the correct answer in the box provided. Answer in terms of a mixed number. 12z - 3 ≥
    12·1 answer
  • I need help with answers A,B,C
    11·1 answer
  • Jeremy walked 6/8 of the way to school and ran the rest of the way. What fraction in simplest form shows the part of the way tha
    9·2 answers
  • 6(2x-8)+3=15<br>help me its multi-step equation
    5·2 answers
  • 23÷1,624 5th grade math
    15·2 answers
  • Line CD passes through points C(3, -5) And D(6, 0). What is the equation of line CD in standard form?
    13·2 answers
  • What is the absolute value of the following complex number?<br> -4 + 4
    7·2 answers
  • Which fraction on the number line is equal to 3? 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4 9/4 10/4 11/4 12/4 13/4 14/4 15/4 16/4 17/4 18/
    15·1 answer
  • Hurry up please it’s due in 5 mins!!!!!!!!
    9·1 answer
  • Please help me I’m timed
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!