Maybe 47.999 g if I can’t I’m sorry.
Answer:
0.004548 M is the concentration of B at equilibrium at 500 K.
Explanation:
A(aq) ⇆ 2 B(aq)
Initially 3.00 M
At equilibrium 3.00 -x 2x
Equilibrium constant of the reaction at 500 K =
Concentration of A at 500 K at equilibrium , [A] = (3.00 -x )M
Concentration of B at 500 K at equilibrium,[B]= 2x
An expression of equilibrium constant is given as:
![K_c=\frac{[B]^2}{[A]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BB%5D%5E2%7D%7B%5BA%5D%7D)

On solving for x:
x = 0.002274 M
[B] = 2 x = 2 × 0.002274 M = 0.004548 M
[A] = (3-x) = 3 M - 0.002274 M =2.997726 M
0.004548 M is the concentration of B at equilibrium.
Answer:
F = 0.0725 N
Explanation:
Given that,
The mass of peach, m = 7.4 g
We need to find the force acts on the peach when it falls from a tree. The force is given by :
F = mg
So,

So, the force is 0.0725 N.
22, because you just add the protons and neutrons (12 + 10)
What is the question you need answered