Answer:
One way to measure the volume of any irregular object (in your case, a stone) is to submerge it completely under water and measure the change in the height of the water level. This change in the water level (let's say it goes from 50 mL to 65 mL) indicates that the stone has a volume of 15 mL.
CH₃CH₂OCH₂ is more soluble in water because it has shorter hydrocarbon chain.
<h3>What is hydrocarbon?</h3>
Hydrocarbon is defined as the compound which contain hydrocarbon and carbon atoms.
The carbon atom attached to each other to form framework and hydrogen atom attach to them in different ways to give different configuration. One of the most popular hydrocarbon compound is diamond.
<h3>Solubility of hydrocarbon in water</h3>
Hydrocarbon is non polar compound whereas water is polar compound. So, hydrocarbon is in soluble in water. But as they have weak intermolecular interactions known as London dispersion forces i.e. Instantaneous dipole-induced dipole interactions.
make them less soluble in water.
Greater the hydrocarbon chain lesser will be the solubility of ketone in water. On the other hand, lesser the hydrocarbon chain greater will be the solubility of ketone in water.
Thus, we concluded that the CH₃CH₂OCH₂ is more soluble in water because it has shorter hydrocarbon chain.
learn more about hydrocarbon:
brainly.com/question/16020705
#SPJ4
Answer:
Explanation:
i cant see the attachment
<u>Answer:</u> The
for the reaction is 72 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)
( × 2)
(3)
( × 2)
The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[2\times (-\Delta H_2)]+[2\times (\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B2%5Ctimes%20%28-%5CDelta%20H_2%29%5D%2B%5B2%5Ctimes%20%28%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-1184))+(2\times -(-234))+(2\times (394))]=72kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-1184%29%29%2B%282%5Ctimes%20-%28-234%29%29%2B%282%5Ctimes%20%28394%29%29%5D%3D72kJ)
Hence, the
for the reaction is 72 kJ.