1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tekilochka [14]
3 years ago
6

For a given amount of gas at a constant temperature, the volume of a gas varies inversely with its pressure is a statement of __

______ law.
a. Charles's
b. Avogadro's
c. Curie's
d. Boyle's
Physics
1 answer:
Ksivusya [100]3 years ago
8 0

Answer:

d. Boyle's

Explanation:

Boyle's Law: States that the volume of a fixed mass of gas is inversely proportional proportional to its pressure, provided temperature remains constant.

Stating this mathematically. this implies that:

V∝1/P

V = k/P, Where k is the constant of proportionality

PV = k

P₁V₁ = P₂V₂

Where P₁ and P₂ are the initial and final pressure respectively, V₁ and V₂ are the the initial and final volume respectively.

Hence the right option is d. Boyle's

You might be interested in
A submarine travels 25 km/h north for 3.2 hours. What is its displacement?
Vika [28.1K]

displ = velocity x time

25 x 3.2 = 75+5 km north.

7 0
3 years ago
Read 2 more answers
1. A carbon atom contains 6 protons and 6 electrons. In order for the carbon atom to become
jek_recluse [69]
It must gain an electron because if the proton number was to change it would no longer be the same element.
5 0
3 years ago
Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 1.00 s, it rotates 21.0 rad. Du
ELEN [110]

With constant angular acceleration \alpha, the disk achieves an angular velocity \omega at time t according to

\omega=\alpha t

and angular displacement \theta according to

\theta=\dfrac12\alpha t^2

a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of

21.0\,\mathrm{rad}=\dfrac12\alpha(1.00\,\mathrm s)^2\implies\alpha=42.0\dfrac{\rm rad}{\mathrm s^2}

b. Under constant acceleration, the average angular velocity is equivalent to

\omega_{\rm avg}=\dfrac{\omega_f+\omega_i}2

where \omega_f and \omega_i are the final and initial angular velocities, respectively. Then

\omega_{\rm avg}=\dfrac{\left(42.0\frac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)}2=42.0\dfrac{\rm rad}{\rm s}

c. After 1.00 s, the disk has instantaneous angular velocity

\omega=\left(42.0\dfrac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)=42.0\dfrac{\rm rad}{\rm s}

d. During the next 1.00 s, the disk will start moving with the angular velocity \omega_0 equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle \theta according to

\theta=\omega_0t+\dfrac12\alpha t^2

which would be equal to

\theta=\left(42.0\dfrac{\rm rad}{\rm s}\right)(1.00\,\mathrm s)+\dfrac12\left(42.0\dfrac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)^2=63.0\,\mathrm{rad}

5 0
3 years ago
Cells a and f shows an early and late stage of the same phase of mitosis . what phase is it?
Lerok [7]
Fun fhjzsh going chichi. Gok
3 0
4 years ago
~~~NEED HELP ASAP~~~<br>Please solve each section and show all work for each section.
anastassius [24]

Explanation:

<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>A</u><u>:</u>

Let the x-axis be (+) towards the right and y-axis be (+) in the upward direction. We can write the net forces on mass m_A as

x:\:\:(F_{net})_x = f_N - T = -m_Aa\:\:\:\:\:\:\:(1)

y:\:\:(F_{net})_y = N - m_Ag = 0 \:\:\:\:\:\:\:\:\:(2)

Substituting (2) into (1), we get

\mu_km_Ag - T = -m_Aa \:\:\:\:\:\:\:\:\:(3)

where f_N= \mu_kN, the frictional force on m_A. Set this aside for now and let's look at the forces on m_B

<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>B</u><u>:</u>

Let the x-axis be (+) up along the inclined plane. We can write the forces on m_B as

x:\:\:(F_{net})_x = T - m_B\sin30= -m_Ba\:\:\:\:\:\:\:(4)

y:\:\:(F_{net})_y = N - m_Bg\cos30 = 0 \:\:\:\:\:\:\:\:\:(5)

From (5), we can solve for <em>N</em> as

N = m_B\cos30 \:\:\:\:\:\:\:\:\:(6)

Set (6) aside for now. We will use this expression later. From (3), we can see that the tension<em> </em><em>T</em><em> </em> is given by

T = m_A( \mu_kg + a)\:\:\:\:\:\:\:\:\:(7)

Substituting (7) into (4) we get

m_A(\mu_kg + a) - m_Bg\sin 30 = -m_Ba

Collecting similar terms together, we get

(m_A + m_B)a = m_Bg\sin30 - \mu_km_Ag

or

a = \left[ \dfrac{m_B\sin30 - \mu_km_A}{(m_A + m_B)} \right]g\:\:\:\:\:\:\:\:\:(8)

Putting in the numbers, we find that a = 1.4\:\text{m/s}. To find the tension <em>T</em>, put the value for the acceleration into (7) and we'll get T = 21.3\:\text{N}. To find the force exerted by the inclined plane on block B, put the numbers into (6) and you'll get N = 50.9\:\text{N}

8 0
3 years ago
Other questions:
  • What are the main causes of crack growth in rocks overtime
    12·2 answers
  • Study the velocity vs. time graph shown.
    7·1 answer
  • An airplane flies with a constant speed<br> of 720 km/h. How far can it travel in<br> 3 hours
    7·1 answer
  • g he work functions of gold, aluminum, and cesium are 5.1 eV, 4.1 eV, and 2.1 eV, respectively. If light of a particular frequen
    5·1 answer
  • In a Little League baseball game, the 145 g ball reaches the batter with a speed of 15.0 m/s. The batter hits the ball, and it l
    12·1 answer
  • Hi:) what does the one highlighted in pink mean?
    14·1 answer
  • The change of state from a gas to a liquid?
    6·2 answers
  • True or False?<br>waves transfer the material from one location to another​
    12·1 answer
  • 4cm cubed = ?m cubed
    15·1 answer
  • What direction would the north pole of a bar magnet point if you were to hang the bar magnet from a thin string?.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!