Answer:
a) m=20000Kg
b) v=0.214m/s
Explanation:
We will separate the problem in 3 parts, part A when there were no coals on the car, part B when there is 1 coal on the car and part C when there are 2 coals on the car. Inertia is the mass in this case.
For each part, and since the coals are thrown vertically, the horizontal linear momentum p=mv must be conserved, that is,
, were each velocity refers to the one of the car (with the eventual coals on it) for each part, and each mass the mass of the car (with the eventual coals on it) also for each part. We will write the mass of the hopper car as
, and the mass of the first and second coals as
and
respectively
We start with the transition between parts A and B, so we have:

Which means

And since we want the mass of the first coal thrown (
) we do:



Substituting values we obtain

For the transition between parts B and C, we can write:

Which means

Since we want the new final speed of the car (
) we do:

Substituting values we obtain

Answer:
0.01 H
Explanation:
V = 12 cos (1000t + 45)
C = 100 micro farad
Let the inductance be L .
When the current and the voltage are in the same phase so it is the condition of resonance.
So capacitive reactance = inductive reactance
Xc = XL
1/ωC = ωL
L = 1 / ω²C
By comparisonV = Vo Cos (ωt + Ф)
ω = 1000 rad/s
L = 1 / (1000 x 1000 x 100 x 10^-6)
L = 1 / 100
L = 0.01H
thus, the inductance of the inductor is 0.01 H.
Answer:
If the acceleration is constant, the movements equations are:
a(t) = A.
for the velocity we can integrate over time:
v(t) = A*t + v0
where v0 is a constant of integration (the initial velocity), for the distance traveled between t = 0 units and t = 10 units, we can solve the integral:
Where to obtain the actual distance you can replace the constant acceleration A and the initial velocity v0.
Answer:
1.) Current = 213.33A
2.) Potential difference = 3200 V
Explanation:
Given that
Number of electrons n = 4 x 10^21 electrons
Resistance R = 15 ohm
Time t = 3 s
From the definition of current ;
Current is the rate of flow of changes. That is,
Current I = Q/t
Where
Q = 4 × 10^21 × 1.6 × 10^-19
Q = 460C
Current I = 460/3
Current I = 213.33 A
Using Ohms law which state that
V = IR
Substitute the resistance R and current I into the formula above
Potential difference V = 213.3 × 15
Potential difference V = 3200 V
No it shouldn't, a hypothesis doesn't need to be correct but must have an idea for why x variable effects y variable and have good reasoning. In the conclusion you should state if it's correct or not and explain why it's correct/incorrect and what answer you've determined from data.