1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pepsi [2]
3 years ago
6

The change of state from a gas to a liquid?

Physics
2 answers:
Oduvanchick [21]3 years ago
8 0
Its because of condensation
ruslelena [56]3 years ago
4 0
Condensation is the answer
You might be interested in
A closely wound, circular coil with a diameter of 4.30 cm has 470 turns and carries a current of 0.460 A .
Nadusha1986 [10]

Hi there!

a)
Let's use Biot-Savart's law to derive an expression for the magnetic field produced by ONE loop.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

dB = Differential Magnetic field element

μ₀ = Permeability of free space (4π × 10⁻⁷ Tm/A)

R = radius of loop (2.15 cm = 0.0215 m)

i = Current in loop (0.460 A)

For a circular coil, the radius vector and the differential length vector are ALWAYS perpendicular. So, for their cross-product, since sin(90) = 1, we can disregard it.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{r^2}

Now, let's write the integral, replacing 'dl' with 'ds' for an arc length:
B = \int \frac{\mu_0}{4\pi} \frac{ids}{R^2}

Taking out constants from the integral:
B =\frac{\mu_0 i}{4\pi R^2}  \int ds

Since we are integrating around an entire circle, we are integrating from 0 to 2π.

B =\frac{\mu_0 i}{4\pi R^2}  \int\limits^{2\pi R}_0 \, ds

Evaluate:
B =\frac{\mu_0 i}{4\pi R^2}  (2\pi R- 0) = \frac{\mu_0 i}{2R}

Plugging in our givens to solve for the magnetic field strength of one loop:

B = \frac{(4\pi *10^{-7}) (0.460)}{2(0.0215)} = 1.3443 \mu T

Multiply by the number of loops to find the total magnetic field:
B_T = N B = 0.00631 = \boxed{6.318 mT}

b)

Now, we have an additional component of the magnetic field. Let's use Biot-Savart's Law again:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

In this case, we cannot disregard the cross-product. Using the angle between the differential length and radius vector 'θ' (in the diagram), we can represent the cross-product as cosθ. However, this would make integrating difficult. Using a right triangle, we can use the angle formed at the top 'φ', and represent this as sinφ.  

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} sin\theta}{r^2}

Using the diagram, if 'z' is the point's height from the center:

r = \sqrt{z^2 + R^2 }\\\\sin\phi = \frac{R}{\sqrt{z^2 + R^2}}

Substituting this into our expression:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{(\sqrt{z^2 + R^2})^2} }(\frac{R}{\sqrt{z^2 + R^2}})\\\\dB = \frac{\mu_0}{4\pi} \frac{iRd\vec{l}}{(z^2 + R^2)^\frac{3}{2}} }

Now, the only thing that isn't constant is the differential length (replace with ds). We will integrate along the entire circle again:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} \int\limits^{2\pi R}_0, ds

Evaluate:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} (2\pi R)\\\\B = \frac{\mu_0 iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Multiplying by the number of loops:
B_T= \frac{\mu_0 N iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Plug in the given values:
B_T= \frac{(4\pi *10^{-7}) (470) (0.460)(0.0215)^2}{2 ((0.095)^2 + (0.0215)^2)^\frac{3}{2}}} \\\\ =  0.00006795 = \boxed{67.952 \mu T}

5 0
2 years ago
Read 2 more answers
How to find initial velocity
lesya [120]

Answer:

Velocity is a function of time and defined by both a magnitude and a direction. [1] Often in physics problems, you will need to calculate the initial velocity (speed and direction) at which an object in question began to travel. There are multiple equations that can be used to determine initial velocity. Using the information given in a problem, you can determine the proper equation to use and easily answer your question.

Explanation:

Hope this helps

7 0
3 years ago
If a car accelerates from rest at a constant 4 m/s
Readme [11.4K]

Answer:

The time it will take for the car to reach a velocity of 28 m/s is 7 seconds

Explanation:

The parameters of the car are;

The acceleration of the car, a = 4 m/s²

The final velocity of the car, v = 28 m/s

The initial velocity of the car, u = 0 m/s (The car starts from rest)

The kinematic equation that can be used for finding (the time) how long it will take for the car to reach a velocity of 28 m/s is given as follows;

v = u + a·t

Where;

v = The final velocity of the car, v = 28 m/s

u = The initial velocity of the car = 0 m/s

a = The acceleration of the car = 4 m/s²

t = =The time it will take for the car to reach a velocity of 28 m/s

Therefore, we get;

t = (v - u)/a

t = (28 m/s - 0 m/s)/(4 m/s²) = 7 s

The time it will take for the car to reach a velocity of 28 m/s, t = 7 seconds.

4 0
3 years ago
A crane exerts a net force of 900 N upward on a 750-kilogram car as the crane starts to lift the car from the deck of a cargo sh
melisa1 [442]

Answer: 1.2m/s^2

Explanation: the force exerted on the car is 900N upwards

The mass of the car is 750kg

According to Newton's third law acceleration is proportional to force

F = ma

900 = 750a

a = 900/750

a = 1.2m/s^2

5 0
3 years ago
What forms of energy are produced by a violin
svet-max [94.6K]
The form of energy a violin produces is sound.
7 0
3 years ago
Other questions:
  • can somebody help me answer this question? A car went from 110 m/s to 80 m/s in 20 seconds. What was the acceleration of the car
    13·1 answer
  • The speed of light is greater in a vacuum than in air or water.<br><br> True or false
    9·2 answers
  • 11. A cyclist accelerates from 0 m/s to 10 m/s in 3 seconds. What is his acceleration ? Is this acceleration higher than that of
    7·1 answer
  • According to the Law of Reflection, a light ray strikes a mirror ________________________________.
    15·1 answer
  • Dimension of radius of sphere​
    7·1 answer
  • What is the meaning of refraction in your own words?
    12·1 answer
  • The relative highness or lowness of a sound is called ______. Multiple Choice pitch timbre dynamics octave
    14·1 answer
  • What is the estimated density of the golf ball? Record your answer to the nearest hundreth.
    10·1 answer
  • A. The potential energy stored in the compressed spring of a dart gun, with a spring constant of 62.00 N/m, is 0.940 J. Find by
    6·1 answer
  • What is the strength of the electric field between two parallel conducting plates separated by 1.00 cm and having a potential di
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!