1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
steposvetlana [31]
3 years ago
8

Compare and contrast the general characteristics of a gas giant planet and one of the inner planets (such as Mercury, Earth, Ven

us or Mars)? Give two differences and one similarity.
Physics
1 answer:
yKpoI14uk [10]3 years ago
6 0
The gas planets usually have extremely high gravitational pulls, the surface isn't solid (since its a gas planet), and gas planets are larger than the inner planets. 
<span>Similarities- These planets all have moons and they both revolve around the sun (obviously).


Hope this helps.</span>
You might be interested in
On Earth, 1 kg = 9.8 N = 2.2 lbs. On the Moon, 1 kg = 1.6 N = 0.37 lbs. Use these relationships to answer the following question
romanna [79]

Answer:

(a) 490 N on earth

(b) 80 N on earth

(c) 45.4545 kg on earth

(d) 270.27 kg on moon

Explanation:

We have given 1 kg = 9.8 N = 2.2 lbs on earth

And 1 kg = 1.6 N = 0.37 lbs on moon

(a) We have given mass of the person m = 50 kg

As it is given that 1 kg = 9.8 N

So 50 kg = 50×9.8 =490 N

(b) Mass of the person on moon = 50 kg

As it is given that on moon 1 kg = 1.6 N

So 50 kg = 50×1.6 = 80 N

(c) We have given that weight of the person on the earth = 100 lbs

As it is given that 1 kg = 2.2 lbs on earth

So 100 lbs = 45.4545 kg

(d) We have given weight of the person on moon = 100 lbs

As it is given that 1 kg = 0.37 lbs

So 100 lbs \frac{100}{0.37}=270.27kg

8 0
3 years ago
How long did it take our planet to produce the fossil fuels we're using today?
Vesna [10]

Answer:

It takes millions sometimes hundreds of millions Explanation:

3 0
2 years ago
Read 2 more answers
To provide the pulse of energy needed for an intense bass, some car stereo systems add capacitors. One system uses a 2.4F capaci
Natasha_Volkova [10]

Answer:

Explanation:

Energy stored in a capacitor

= 1/2 CV²

C is capacitance and V is potential of the capacitor .

When capacitor is charged to 24 V ,

E₁ = 1/2 x 2.4 x 24 x24 = 691.2 J

When it is charged to 12 volt

E₂ = 1/2 CV²

.5 X 2.4 X 12 X12

= 172.8 J

3 0
3 years ago
A block with mass 0.470 kg sits at rest on a light but not long vertical spring that has spring constant 85.0 N/m and one end on
a_sh-v [17]

Answer: elastic potential energy = 20.27 J

Explanation:

Given that the

Mass M = 0.470 kg

Height h = 4.40 m

Spring constant K = 85 N/m

The maximum elastic potential will be equal to the maximum kinetic energy experienced by the block.

But according to conservative of energy, the maximum kinetic energy is equal to the maximum potential energy experienced by the block of mass M.

That is

K .E = P.E = mgh

Where g = 9.8m/s^2

Substitutes all the parameters into the formula

K.E = 0.470 × 9.8 × 4.4

K.E = 20.27 J

Where K.E = maximum elastic potential energy stored in the spring during the motion of the blocks after the collision which is 20.27J.

4 0
2 years ago
If the earth's magnetic field has strength 0.50 gauss and makes an angle of 20.0 degrees with the garage floor, calculate the ch
lys-0071 [83]

Answer:

ΔΦ = -3.39*10^-6

Explanation:

Given:-

- The given magnetic field strength B = 0.50 gauss

- The angle between earth magnetic field and garage floor ∅ = 20 °

- The loop is rotated by 90 degree.

- The radius of the coil r = 19 cm

Find:

calculate the change in the magnetic flux δφb, in wb, through one of the loops of the coil during the rotation.

Solution:

- The change on flux ΔΦ occurs due to change in angle θ of earth's magnetic field B and the normal to circular coil.

- The strength of magnetic field B and the are of the loop A remains constant. So we have:

                         Φ = B*A*cos(θ)

                         ΔΦ = B*A*( cos(θ_1) - cos(θ_2) )

- The initial angle θ_1 between the normal to the coil and B was:

                         θ_1  = 90° -  ∅

                         θ_1  = 90° -  20° = 70°

The angle θ_2 after rotation between the normal to the coil and B was:

                         θ_2  =  ∅

                         θ_2  = 20°

- Hence, the change in flux can be calculated:

                        ΔΦ = 0.5*10^-4*π*0.19*( cos(70) - cos(20) )

                        ΔΦ = -3.39*10^-6

                       

8 0
3 years ago
Other questions:
  • HELP ASAP
    11·1 answer
  • The nebular theory also predicts that the cloud should heat up as it collapses. what physical law explains why it heats up?
    10·1 answer
  • Why does cold weather feel colder inside?
    5·1 answer
  • a horizontal force of 100N is required to push a crate across a factory floor at a constant speed. What is the net force acting
    8·1 answer
  • Which equals 23 kilograms?
    10·2 answers
  • Miguel is skipping rocks across the surface of a lake. After he throws it, each stone goes through the following motions: the st
    9·1 answer
  • I have no clue what to do to find the problem.
    12·1 answer
  • In a physics laboratory experiment, a coil with 250 turns enclosing an area of 14 cm2 is rotated in a time interval of 0.030 s f
    9·1 answer
  • GIVING THE BRAINEST AND 15 POINTS
    8·1 answer
  • Tranh slowed his skateboard as he
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!