Answer:
not many things maybe they accomplish one job the machine has been programmed to do.
Explanation:
Answer:
B is the best answer for this question
I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
Answer:
magma
Explanation:
I wanna think that that's right if it's not in so sorry but I'm pretty sure it's magma
Answer:
Interface
Explanation:
This is a classic example of Interface technology.
An interface allows different software packages to communicate without re-entering data.
Here in this case also systems are able to communicate with one another without duplicating data entry. For example, practice management software and another for their electronic health record.