1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veseljchak [2.6K]
2 years ago
8

Two identical 0.50-kg carts, each 0.10 m long, are at rest on a low-friction track and are connected by a spring that is initial

ly at its relaxed length of 0.50 m and is of negligible inertia. You give the cart on the left a push to the right (that is, toward the other cart), exerting a constant 6.0-N force. You stop pushing at the instant when the cart has moved 0.60m . At this instant, the relative velocity of the two carts is zero and the spring is compressed to a length of 0.30 m. A locking mechanism keeps the spring compressed, and the two carts continue moving to the right. By what amount do you change the system's kinetic energy?
Physics
1 answer:
Keith_Richards [23]2 years ago
8 0

Answer:

The system's kinetic energy changes by 3.6 J

Explanation:

The given parameters are;

The number of cart = 2

The mass of each cart = 0.5kg

The initial length of the spring = 0.50 m

The final length of the spring =T0.3 m

The change in position of the first cart = 0.6 m

The energy given to the first cart = Work done by the force = Force × Displacement

The initial kinetic energy of the two cart moving together = Energy given to the first cart = 6.0 × 0.2 = 1.2J

The kinetic energy given to the two cart combined = The applied force × The total displacement of the two cart as they move together

The kinetic energy given to the two cart combined = 6.0 × (0.6 - 0.2)

The kinetic energy given to the two cart combined = 6.0 × 0.4 = 2.4 J

The total kinetic energy given to the two cart = 1.2 + 2.4 = 3.6 J

The total kinetic energy given to the two cart = 3.6 J

The system's kinetic energy changes by 3.6 J.

You might be interested in
A 75kg hockey player is skating across the ice at a speed of 6.0m/s. What is the magnitude of the average force required to stop
liq [111]

Answer:

692.31 N

Explanation:

Applying,

F = ma............... Equation 1

Where F = Average force required to stop the player, m = mass of the player, a = acceleration of the player

But,

a = (v-u)/t............ Equation 2

Where v = final velocity, u = initial velocity, t = time.

Substitute equation 2 into equation 1

F = m(v-u)/t............ Equation 3

From the question,

Given: m = 75 kg, u = 6.0 m/s, v = 0 m/s (to stop), t = 0.65 s

Substitute these values into equation 3

F = 75(0-6)/0.65

F = -692.31 N

Hence the average force required to stop the player is 692.31 N

6 0
2 years ago
What is this? Plz I need help...
RSB [31]

Answer:

the time it takes for one complete back and forth swing

Explanation:

the Mark's is showing you the time it swings back and forth

4 0
3 years ago
The speed of light in a transparent medium is 0.6 times that of its speed in vacuum. Find the refractive index of the medium.
grin007 [14]
<h2>Answer:</h2>

The refractive index is 1.66

<h2>Explanation:</h2>

The speed of light in a transparent medium is 0.6 times that of its speed in vacuum .

Refractive index of medium = speed of light in vacuum / speed of light in medium  

So

RI = 1/0.6 = 5/3 or 1.66

3 0
3 years ago
Read 2 more answers
As scientists research, they often find information that does not fit with current theories. What happens when new, contradictor
timofeeve [1]
The correct answer is "C". 'Old theories are adjusted to incorporate all old new information.' This makes the most sense, regarded the old and new information should be taken into consideration.

I hope this helped you!

Brainliest answer is always appreciated!
8 0
3 years ago
Read 2 more answers
Two point charges of equal magnitude are 8.0 cm apart. At the midpoint of the line connecting them, their combined electric fiel
bagirrra123 [75]

Answer:

r = 8/2 = 4cm = 0.04m

k = 9×10^9

Enet = 51 N/C

Enet = E1 + E2

since E1 = E2

E1 = Enet/2 = 51/2

E/2 = kq/r²

q = Er²/2k

q = (51 × 0.04²)/(2×9×10^9)

q = 4.5×10^-12 C

q1 = q2 = 4.5 pC

Explanation:

The electric field is a region around a

charge in which it exerts electrostatic force

on another charges. While the strength of

electric field at any point in space is called

electric field intensity. It is a vector

quantity. Its unit is NC¯¹.

According to coulomb’s law ,if a unit

positive charge q (call it a test charge) is

brought near a charge q (call a field

charge) placed in space,the charge q will

experience a force. The value of this force

depends upon the distance between the

two charges. If the charge q is moved

away from q ,this force would decrease till

at a certain distance the force would be

practically reduced to zero. The charge q

is then out of the influence of charge q.

The region of space surrounding the charge

q in which it exerts a force on the charge

q is known as E.F of the charge

q. Mathematically it is expressed as:

E =F/q

The direction of the vector E is the same

as the direction of F,because q is a

positive scalar. Dimensionally,the E.F is

force per unit charge,and its SI unit is the

newton/coulomb (N/C).

7 0
3 years ago
Other questions:
  • Fusion is a type of _____.
    13·1 answer
  • A stone is dropped down a well and hits the water 2.50 s later. What is the depth from the edge of the well to the water? 61.3,
    13·1 answer
  • Calculate the acceleration of a bus whose speed changes from 7 m/s to 16 m/s over a period of 5 s.
    11·1 answer
  • Rank the objects below from least to greatest momentum:
    8·1 answer
  • If the charge remains the same but the radius of the sphere is doubled, the electric flux coming out of it will be
    9·1 answer
  • Steel blocks A and B, which have equal masses, are at TA = 300 oC and T8 = 400 oC. Block C, with mc - 2mA, is at TC = 350 oC. Bl
    13·1 answer
  • A ray of light is projected into a glass tube that is surrounded by air. The glass has an index of refraction of 1.50 and air ha
    5·1 answer
  • F = 50 N<br> m = 72 kg<br> m/s2
    15·1 answer
  • A ball is thrown vertically upward with a speed of 19.0 m/s. (a) How high does it rise? m (b) How long does it take to reach its
    13·2 answers
  • If the net force is 7 what is the magnitude
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!