Answer:
Place the reactants in a smaller container.
Explanation:
If you were to reduce the source of heat, the hydrogen and oxygen molecules would lose their kinetic energy, resulting in less collisions.
_______________________________________________________
Maintaining the same temperature of the reactants, the speed would neither increase nor decrease as temperature is directly proportional to the kinetic energy of the molecules, which in turn is directly proportional to the number of collisions. However, placing the reactants in a smaller container would result in less volume, and hence the molecules would collide with one another more often!
<u><em>Hope that helps!</em></u>
The fact that some of the solid was transferred would decrease the mass of the limiting reactant.
<h3>What is the limiting reactant?</h3>
We know that in a chemical reaction, there are at least two substances that are combined in order to give the product of the reaction. We also know that the product that we obtain must be in accordance to the stoichiometry of the reaction.
It is common to see that one of the reactants would be present in a very large amount while the other reactant would be present only in quite a small amount. The reactant that is present in a small amount is said to be the limiting reactant while the one that is present in the large amount is said to be the reactant that is in excess.
Having said this, we know that the mass of the limiting reactant can be obtained from the mass of the solid that is obtained after the reaction.
If we do not take out all of the solid from the centrifuge, the mass would not be accurately weighed and the mass of the limiting reactant would not be accurately determined.
Learn more about mass of the product:brainly.com/question/19694949
#SPJ1
A rain gauge<span> (also known as an udometer, pluviometer, or an ombrometer) is an instrument used by meteorologists and hydrologists to gather and measure the amount of liquid precipitation over a set period of time.
i hope that helps</span>
Answer:
7.5 sec.
Explanation:
A = A₀e⁻^kt => k = ln(A/A₀)/-t => ln(6.25/100)/-30s = 0.0924 s⁻¹
k·t₀.₅=0.693 => t₀.₅=0.693/k = (0.693/0.0924)s = 7.5 s
The answer is D
Entropy is a measure of disorder