<span>we have that
the cube roots of 27(cos 330° + i sin 330°) will be
</span>∛[27(cos 330° + i sin 330°)]
we know that
e<span>^(ix)=cos x + isinx
therefore
</span>∛[27(cos 330° + i sin 330°)]------> ∛[27(e^(i330°))]-----> 3∛[(e^(i110°)³)]
3∛[(e^(i110°)³)]--------> 3e^(i110°)-------------> 3[cos 110° + i sin 110°]
z1=3[cos 110° + i sin 110°]
cube root in complex number, divide angle by 3
360nº/3 = 120nº --> add 120º for z2 angle, again for z3
<span>therefore
</span>
z2=3[cos ((110°+120°) + i sin (110°+120°)]------ > 3[cos 230° + i sin 230°]
z3=3[cos (230°+120°) + i sin (230°+120°)]--------> 3[cos 350° + i sin 350°]
<span>
the answer is
</span>z1=3[cos 110° + i sin 110°]<span>
</span>z2=3[cos 230° + i sin 230°]
z3=3[cos 350° + i sin 350°]<span>
</span>
<h2>
<em><u>HEYA</u></em></h2>
<h3>THE MID TERM SPLITTING OF THE EQUATION IS :</h3>





now shifted to 5 units left
therefore,
x=-4
hope it helps you mate thanks for the question and if possible please mark it as brainliest
Turning clockwise means the number increase, and counterclockwise means the number decreases
Therefore your answer is 37 + (3*1/2)-(3*1/4)
= 37.75
Hope this helped :)
Answer:
yes, AA
Step-by-step explanation:
since both have 90 degree angles, and 62+28 is also 90, all 3 sets of angles are congruent
Answer:
15/13
Step-by-step explanation: