Answer:
t = 3/2
Step-by-step explanation:
Instead of randomly guessing values of "t" that will satisfy the equation, you can easily find the correct value by solving the equation in terms of "t". In other words, you can set the equation equal to "t" to find the final answer.
(-2/3)t - 2 = -3 <----- Original equation
(-2/3)t = -1 <----- Add 2 to both sides
t = 3/2 <----- Divide both sides by -2/3
You can check this value by plugging it into "t" and determining whether both sides of the equations will be equal.
(-2/3)t - 2 = -3 <----- Original equation
(-2/3)(3/2) - 2 = -3 <----- Plug 3/2 into "t"
-6/6 - 2 = -3 <----- Multiply -2/3 and 3/2
-1 - 2 = -3 <----- Simplify -6/6
-3 = -3 <----- Subtract
Slope point form :
To put in slope point form, label any of the points as either X1,y1 and X and y, then plug in those values into the following equation form.
Y - y1 = m(X-X1)
But before, we must solve for the m value or slope.
M = y2-y1/x2-X1
M = 5/2 - -1/2 / -1/2 - 3/2.
M = 5/2 + 1/2 / -(1/2+3/2)
M = 6/2 / -(4/2)
M = 3/-2
Now we can place it in slope point and also in standard form of a line.
Y-y1 = m(X -X1)
Y - -1/2 = -3/2(X - 3/2)
Y + 1/2 = -3/2(X - 3/2)
This is in slope point form.
Y + 1/2 = -3/2x + 9/4
Y + 1/2 - 1/2 = -3/2x + 9/4 - 1/2
1/2 = 2/4
Y = -3/2x + 7/4
-3/2x = -6/4x
Y = -6/4x + 7/4
Y • 4 = 4( -6/4 X + 7/4)
4y = -6x + 7
4y + 6x = -6x + 6x +7
6x + 4y = 7
This is in standard form. If you have any questions of the steps just ask.
The equation of any given circle is:
where (h, k) is the center and r is the radius.
In the problem, we are given the center, and the radius. When we plug them in:
we got the formula of the circle.