B. White Dwarf.
<h3>Explanation</h3>
The star would eventually run out of hydrogen fuel in the core. The core would shrink and heats up. As the temperature in the core increases, some of the helium in the core will undergo the triple-alpha process to produce elements such as Be, C, and O. The triple-alpha process will heat the outer layers of the star and blow them away from the core. This process will take a long time. Meanwhile, a planetary nebula will form.
As the outer layers of gas leave the core and cool down, they become no longer visible. The only thing left is the core of the star. Consider the Chandrasekhar Limit:
Chandrasekhar Limit:
.
A star with core mass smaller than the Chandrasekhar Limit will not overcome electron degeneracy and end up as a white dwarf. Most of the outer layer of the star in question here will be blown away already. The core mass of this star will be only a fraction of its
, which is much smaller than the Chandrasekhar Limit.
As the star completes the triple alpha process, its core continues to get smaller. Eventually, atoms will get so close that electrons from two nearby atoms will almost run into each other. By Pauli Exclusion Principle, that's not going to happen. Electron degeneracy will exert a strong outward force on the core. It would balance the inward gravitational pull and prevent the star from collapsing any further. The star will not go any smaller. Still, it will gain in temperature and glow on the blue end of the spectrum. It will end up as a white dwarf.
2-ethyl-4,4 -dimethyl hex-1-ene.
Answer:
The mole fraction of codeine is 5.4%
Explanation:
Mole fraction = Mole of solute / Total moles (Mole solute + Mole solvent)
Solute (Codeine)
Molar mass 299.36 g/m
Mass / Molar mass = Mole → 46.85 g /299.36 g/m = 0.156 moles
Solvent (Ethanol)
Molar mass 46.07 g/m
125.5 g / 46.07 g/m = 2.724 moles
Mole fraction (Codeine) 0.156 / (0.156 + 2.724) → 0.054
According to your equation, for every mole of iron oxide (Fe2O3), it takes 3 moles of carbon monoxide (CO). So for 1.75 moles, it takes 3 times as many moles of CO.
1.75 x 3 = 5.25 moles of CO.
I think your product is CO2. Dalton's Law sayeth that the coefficients tell us the ratios of moles. So if you hve 1.75 moles of Fe(III)oxide, 3*1.75 moles of CO are needed (in theory) to react completely. The answer is requested in moles, so you need go no further.
Answer:
A?
Explanation:
Solenoid is the generic term for a coil of wire used as an electromagnet.
(I'm not sure if it's the right answer but hope this helps and good luck)
:)