Answer:
D
Explanation:
The proberties of the substances that are produced are different from the properties of the original substances.
Answer:
It can be removed by acidic chemicals
Explanation:
Observation, in which the scientist observes what is happening, collects information, and studies facts relevant to the problem. In this stage, statistics suggests what can most advantageously be observed and how data might be collected.
Hypothesis, in which the scientist puts forth educated hunches or explanations for observed findings and facts. In this stage, the statistician helps format observations in a form that is comprehensible and understandable.
Prediction, in which the anticipatory deductions based on hypotheses are put forward in testable ways. Statistics can help only a little at this stage of analysis, for predictive insights are often intuitive and creative rather than numerical.
Verification, in which data are collected to test predictions. In judging the extent to which predictions are borne out by observation, we recognize that data and predictions almost never agree exactly, even when theories are correct.
The boiling point of oxygen is higher than nitrogen's boiling
The reason the boiling point of O2 is higher is not because of increased van der Waals interactions, but simple physics. The mass of a molecule of O2 is greater than that of a molecule of N2, so the molecule of O2 traveling at a speed sufficient to break out of the liquid phase has a greater kinetic energy than an analogous N2 molecule.
The net effect is that more energy must be distributed throughout a sample of O2 to achieve a given vapor pressure (in this case equal to atmospheric pressure) than for a sample of N2. More energy means greater temperature.