Answer:
Solid to liquid
Explanation:
Entropy is a state of randomness or disorderliness of the particles of a system. Some part of the heat energy of a system is related to the state of disorder or randomness of the particles of the system.
The entropic level of a system depends on two of major factors:
1. Temperature: Entropy increases with temperature rise due to the fact that the randomness of the particles of a system increases at a higher temperature.
2. Physical state of matter: The increasing order of entropy is:
Solid < Liquid < Gas
Gases are the most disordered and have the highest entropy. In moving from solid to liquid to gas, entropy of a system would increase.
Answer:
Cs+ and Cl− in CsCl is an example of electrostatic forces that hold together.
Explanation:
The interaction that occurs between atoms that have an electric charge is called electromagnetic force. When the charges are at rest, the interaction between them is called electrostatic force. This force depends on the distance "r" between the atoms.
Depending on the sign of the charges that interact, electrostatic force can be attractive or repulsive. The electrostatic interaction between charges of the same sign is repulsive (two negative charges or two positive charges), while the interaction between charges of the opposite sign (a negative charge and a positive charge) is attractive. In the case of neutral charges against negative or positive charges, no force is generated.
<u><em>Cs+ and Cl− in CsCl is an example of electrostatic forces that hold together. </em></u>In this example you have a positively charged atom (Cs₊) and a negatively charged atom (Cl₋). As they are opposite charges they will attract.
Physical property
Have a nice day!
I check all of them. most of them correct but one
in question 6, the answer is the third choice. remember to find the neutrons, you take the atomic mass minus the atomic number. 38 - 18= 20
Answer:
43.18 gm
Explanation:
Heat of fusion of water at 0° C is 334 j/gm
then you have to heat the water to boiling point (100 C)
specific heat of water is 4.186 j/g-c
x = grams of water
x ( 334 + 4.186 (100) ) = 32500
x = 43.18 gm