The reducing agent can approach the carbonyl face of camphor by forming a one carbon bridge (known as an exo attack) or a two carbon bridge (termed endo).
The two resultant stereoisomers are known as isoborneol and borneol (from exo attack) (from endo attack). Gas chromatography (GC) analysis may be used to calculate the ratio of each isomeric alcohol in the mixture. Unfortunately, IR analysis does not permit this.
The stereochemistry of the reaction is regulated in stiff cyclic compounds like camphor and norcamphor by protecting one side of the carbonyl group from the reagent's assault. The hydrogen atom is added to the endo side, creating the exo alcohol isoborneol, while the methyl groups on the one-carbon bridge of camphor screen the approach of the hydride from the "top" or exo side of the two-carbon bridge. You will be asked to guess the main isomeric alcohol created by the norcamphor hydride reduction later in the lab report.
To view more about rational reaction, refer to:
brainly.com/question/20308523
#SPJ4
Zinc's most abundant isotope : Zinc-65
<h3>Further explanation
</h3>
Isotopes are atoms whose no-atom has the same number of protons while still having a different number of neutrons.
So Isotopes are elements that have the same Atomic Number (Proton)
Atomic mass is the average atomic mass of all its isotopes
In determining the mass of an atom, as a standard is the mass of 1 carbon-12 atom whose mass is 12 amu
Mass atom X = mass isotope 1 . % + mass isotope 2.%
To decide zinc's most abundant isotope, then choose the closest mass number
or we can check the difference with the average mass number, if the value is the smallest, then that isotope has the largest abundant




The closest = Zinc-65(the smallest)
Put the cation (a positive ion, the metal in this case,) without changing anything, then the nonmetal, or anion. For the nonmetal, change the ending to -ide. For example, if you have potassium and chlorine, you would have potassium chloride. Hope this helps!
Answer:
Option D
Explanation:
analyzing cells is something I'm doing in science class right now!
Hope this helped, have a nice day! :)
Answer:
Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂
Explanation:
There are many ways to balance a chemical equation. In this case, I will show you the algebraic method:
The first step is assign a letter to each compound:
a Fe₂O₃ + b CO → c Fe + d CO₂
Then, you must write the balance equations for each atom, thus:
<em>Fe: 2a = c</em>
<em>C: b = d</em>
<em>O: 3a + b = 2d</em>
The last step is assign a value to a letter. I, for example, will say that <em>a is 1, </em>and then find the values for the others letters, thus:
<em>Fe: 2a = c </em>if <em>a=1; c=2</em>
<em>O: 3a + b = 2d </em>if <em>a=1 → 3+b = 2d</em>
As b = d → <em>3+d = 2d; 3 = 2d - d; </em>3=d and 3=b
Thus, the balanced equation is:
Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂
I hope it helps!