Answer:
Option A.
Step-by-step explanation:
It is given secθ = - ![\frac{4}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B3%7D)
then cosθ = -![\frac{3}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B4%7D)
Now we know the identity
sinθ = ![\sqrt{1-cos^{2}\theta }](https://tex.z-dn.net/?f=%5Csqrt%7B1-cos%5E%7B2%7D%5Ctheta%20%7D)
= ![\sqrt{1-(-\frac{3}{4} )^{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B1-%28-%5Cfrac%7B3%7D%7B4%7D%20%29%5E%7B2%7D%7D)
= ![\frac{\sqrt{7} }{4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B7%7D%20%7D%7B4%7D)
Now sin2θ = 2sinθcosθ
Now we put the values of cosine and sine in the formula
sin2θ = 2×(-
)(
)
= -![\frac{3\sqrt{7}}{8}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7B7%7D%7D%7B8%7D)
Therefore, option A. is the answer.
Answer:
![nCx = \frac{n!}{x! (n-x)!}](https://tex.z-dn.net/?f=%20nCx%20%3D%20%5Cfrac%7Bn%21%7D%7Bx%21%20%28n-x%29%21%7D)
On this case n =6 and x =6 we got:
![6C6 = \frac{6!}{6! (6-6)!} = \frac{6!}{6! 0!}= \frac{6!}{6!}=1](https://tex.z-dn.net/?f=%206C6%20%3D%20%5Cfrac%7B6%21%7D%7B6%21%20%286-6%29%21%7D%20%3D%20%5Cfrac%7B6%21%7D%7B6%21%200%21%7D%3D%20%5Cfrac%7B6%21%7D%7B6%21%7D%3D1)
Step-by-step explanation:
The utility for the combination formula is in order to find the number of ways to order a set of elements
For this case we want to find the following expression:
![6C6](https://tex.z-dn.net/?f=%206C6)
And the general formula for combination is given by:
![nCx = \frac{n!}{x! (n-x)!}](https://tex.z-dn.net/?f=%20nCx%20%3D%20%5Cfrac%7Bn%21%7D%7Bx%21%20%28n-x%29%21%7D)
On this case n =6 and x =6 we got:
![6C6 = \frac{6!}{6! (6-6)!} = \frac{6!}{6! 0!}= \frac{6!}{6!}=1](https://tex.z-dn.net/?f=%206C6%20%3D%20%5Cfrac%7B6%21%7D%7B6%21%20%286-6%29%21%7D%20%3D%20%5Cfrac%7B6%21%7D%7B6%21%200%21%7D%3D%20%5Cfrac%7B6%21%7D%7B6%21%7D%3D1)
Step-by-step explanation:
<h2>y = √—16x²+8x—2√8x+1+2</h2>
Answer:
Total impedance in circuit = 8 - 2j ohms
Step-by-step explanation:
Given:
Circuit one = 1 + 3j ohms
Circuit two = 7 - 5j ohms
Find:
Total impedance in circuit
Computation:
Total impedance in circuit = Circuit one + Circuit two
Total impedance in circuit = 1 + 3j + 7 - 5j
Total impedance in circuit = 8 - 2j ohms