Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps
Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
The mole<span> is the </span>unit of measurement<span> in the </span>International System of Units<span> (SI) for </span>amount of substance<span>. It is defined as the </span>amount<span> of a </span>chemical substance<span> that contains as many representative particles, e.g., </span>atoms<span>, </span>molecules<span>, </span>ions<span>, </span>electrons<span>, or </span>photons<span>, as there are atoms in 12 </span>grams<span> of </span>carbon-12<span> (</span>12<span>C), the </span>isotope<span> of </span>carbon<span> with </span>relative atomic mass<span> 12 by definition.
so to solve the moles, divide the mass with molar mass
moles = 4177 g / </span><span>133.34 g/mol
moles = 31.33 moles</span>
Answer:
Yes
Explanation:
Isotopes are atoms of the same element that have different numbers of neutrons in their nuclei. Everything else about them is the same.(If you want more explanation tell me).
What are you asking on this question?