Answer:
true
Explanation:
because if you find the right answer that proves the theory to be correct.
Answer: -
3.151 M
Explanation: -
Let the volume of the solution be 1000 mL.
At 25.0 °C, Density = 1.260 g/ mL
Mass of the solution = Density x volume
= 1.260 g / mL x 1000 mL
= 1260 g
At 25.0 °C, the molarity = 3.179 M
Number of moles present per 1000 mL = 3.179 mol
Strength of the solution in g / mol
= 1260 g / 3.179 mol = 396.35 g / mol (at 25.0 °C)
Now at 50.0 °C
The density is 1.249 g/ mL
Mass of the solution = density x volume = 1.249 g / mL x 1000 mL
= 1249 g.
Number of moles present in 1249 g = Mass of the solution / Strength in g /mol
= 
= 3.151 moles.
So 3.151 moles is present in 1000 mL at 50.0 °C
Molarity at 50.0 °C = 3.151 M
The correct answer is slow
Answer:
116.3 grCO2
Explanation:
1st - we balance the equation so that it finds the same amount of elements of the product side and of the reagent side
C6H6 +15/2 O2⟶ 6CO2 +3 H2O
2nd - we calculate the limiting reagent
39.2gr C6H6*(240grO2/78grC6H6)=120 grO2
we don't have that amount of oxygen so this is the excess reagent and oxygen the limiting reagent
3rd - we use the limiting reagent to calculate the amount of CO2 in grams
105.7grO2*(264grCO2/240grO2)=116.3 grCO2
A good example is the mineral<span> plagioclase. Plagioclase is a member of the feldspar group, but </span>there<span> is more than one type of plagioclase.</span>