Transferring or sharing electrons between atoms forms a covalent bond.<span> Covalent
bonding is when atoms share electrons. It is a chemical bond that involves the
sharing of electron pairs. These pairs are called bonding pairs. Examples of
compounds that has covalent bonds are CO2, organic compounds, lipids and
proteins.</span>
The ph of a saturated solution of Ca(OH)2 is 12.35
CALCULATION:
For the reaction
Ca(OH)2 → Ca2+ + 2OH-
we will use the Ksp expression to solve for the concentration [OH-] and then use the acid base concepts to get the pH:
Ksp = [Ca2+][OH-]^2
The listed Ksp value is 5.5 x 10^-6. Substituting this to the Ksp expression, we have
Ksp = 5.5 x 10^-6 = (s) (2s)^2 = 4s^3
s3 = 5.5x10^-6 / 4
Taking the cube root, we now have
s = cube root of (5.5x10^-6 / 4)s
= 0.01112
We know that the value of [OH-] is actually equal to 2s:
[OH-] = 2s = 2 * 0.01112 = 0.02224 M
We can now calculate for pOH:
pOH = - log [OH-]
= -log(0.02224)
= 1.65
Therefore, the pH is
pH = 14 - pOH
= 14 - 1.65
= 12.35
Answer:
Explanation:
count given by old sample = .97 disintegrations per minute per gram
count given by fresh sample = 6.68 disintegrations per minute per gram
Half life of radioactive carbon = 5568 years
rate of disintegration
dN / dt = λ N
In other words rate of disintegration is proportional to no of radioactive atoms present . As number reduces rate also reduces .
Let initial no of radioactive be N₀ and after time t , number reduces to N
N₀ / N = 6.68 / .97
Now



λ is disintegration constant
λ = .693 / half life
= .693 / 5568
= .00012446 year⁻¹
Putting the values in the equation above


1.929577 = .00012446 t
t = 15503.6 years .
Answer:
Ba(NO2)2
Explanation:
Anything that contains calcium comes from a strong acid. Nitrous oxide (NO2) is a weak acid, therefore the salt it makes is less acidic than the rest --> the highest pH :)
Answer:
B. Rice Plant
Explanation:
Symbiotic bacteria are present in nodules of cereal plants such as wheat. Symbiotic bacteria are present in nodules of pod bearing plants such as peas, grams, etc.