<span>37.8 g CH2Br2 X (1 mol CH2Br2 / 173.83 g) = 4.60X10^-3 mol CH2Br2
4.60X10^-3 mol CH2Br2 X (2 mol Br / 1 mol CH2Br2) X 6.02X10^23 atoms/mol = 5.54X10^21 bromine atoms</span>
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 4.972 atm
V= 9.583 L
n=?
R= 
T=31.8 +273= 304.8 K
Putting value in the given equation:
=n
n= 
Moles = 1.905 moles
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
_Mg + _HCL = _MgCl2 + H2
Separate the terms on each side:
_Mg + _HCl = _MgCl2 + H2
Mg- 1 Mg-1
H-1 H-2
Cl-1 Cl-2
Mg is balanced on both sides so move on to the next (put a 1 in the space).
1Mg
There are two H's and two Cl's on the results side, so to balance the equation put a 2 as a coefficient for HCl and it'll all balance out.
2HCl
Balamced equation will be:
1Mg + 2HCL = 1MgCl2 + H2
69.9%
Explanation:
To find the mass percentage of iron in the compound in Fe₂O₃, we would go ahead to express the given molar mass of the iron to that of the compound.
Mass percentage =
x 100
Molar mass of Fe = 55.85g/mol
Molar mass of O = 16g/mol
Molar mass of Fe₂O₃ = 2(55.85) + 3(16) = 159.7g/mol
Mass percentage =
= 69.94% = 69.9%
learn more:
Mass percentage brainly.com/question/8170905
#learnwithBrainly