ITS B. FASHO that’s what I’m think
Answer:
the answer is A
I made a chart for AP chem if you want to refer to it.
The molar mass of the gene fragment is 19182 g/mol.
What is osmotic pressure ?
Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in a pure solvent by osmosis. Potential osmotic pressure is the maximum osmotic pressure that could develop in a solution if it were separated from its pure solvent by a semipermeable membrane.
We employ the osmotic pressure equation to determine the solute's concentration, which is:
π = iMRT
Using the values in the equation above, we obtain: 19182 g/mol.
To learn more about gene fragment click on the link below:
brainly.com/question/22426204
#SPJ4
Answer:
91.2 nm
Explanation:
The Rydberg equation is given by the formula
1/ λ = Rh ( 1/ n₁² - 1/ n₂²)
where
λ is the wavelength
Rh is Rydberg constant
and n₁ and n₂ are the energy levels of the transion.
We can see from this equation that the wavelength is inversely proportional to the difference of the squares of the inverse of the quantum numbers n₁ and n₂. It follows then that the smallest wavelength will be given when the the transitions are between the greatest separation between n₁ and n₂ whicg occurs when n1= 1 and n₂= ∞ , that is the greater the separation in energy levels the shorter the wavelength.
Substituting for n₁ and n₂ and solving for λ :
1/λ = 1.0974 x 10⁷ m⁻¹ x ( 1/1² -1/ ∞²) = 1.0974 x 10⁷ m⁻¹ x ( 1/1² - 0) =
λ = 1/1.0974 x 10⁷ m = 9.1 x 10⁻8 m = 91.2 nm
Beaker of water i guess because usually at home when i get out cold water i put in my room and it cools fast for me so..... i think