Based on the attached image:
- The name of the longitude line that passes through point A is the International Date Line
- The longitude 180° is experiencing solar noon because the rays of the sun are parallel to it.
- The longitude for 6 pm is 90° W, 12 midnight is 0°, and 6 am is 90° E
- Longitude 120° is B
- Solar time at Point B is 4 pm
- The location will correspond to any point on the same latitude as A
<h3>What are lines of longitude?</h3>
Lines of longitude are imaginary lines which run along the earth from the North pole. to the South pole.
Longitude lines divide the earth into semi-circles.
Longitude lines are known as meridians and each meridian measures one arc degree of longitude.
Considering the attached image:
- The name of the longitude line that passes through point A is the International Date Line
- The longitude 180° is experiencing solar noon because the rays of the sun are parallel to it.
- The longitude for 6 pm is 90° W, 12 midnight is 0°, and 6 am is 90° E
- Longitude 120° is B
- Solar time at Point B is 4 pm
- the location will correspond to any point on the same latitude as A
In conclusion, longitude lines are imaginary lines and run from North to South on the earth.
Learn more about lines of longitude at: brainly.com/question/1939015
#SPJ1
Answer:
A larger impulse. A 1-kg ball has twice as much speed as a 10-kg ball.
Explanation:
The answer is Monocline. And I checked it, it's correct.
Answer:
The sound intensity of train is 1000 times greater than that of the library.
Explanation:
We have expression for sound intensity level,

A train whistle has a sound intensity level of 70 dB
We have

A library has a sound intensity level of about 40 dB
We also have

Dividing both equations

The sound intensity of train is 1000 times greater than that of the library.
Answer:
Explanation:
Let the angle between the first polariser and the second polariser axis is θ.
By using of law of Malus
(a)
Let the intensity of light coming out from the first polariser is I'
.... (1)
Now the angle between the transmission axis of the second and the third polariser is 90 - θ. Let the intensity of light coming out from the third polariser is I''.
By the law of Malus

So,



(b)
Now differentiate with respect to θ.

