Answer:
Newton's First Law of Motion.
Explanation:
Newton's first law of motion states that an object continues to stay in its state of rest, or of uniform motion, until acted upon by an external force.
So in the case of the golf ball here, the ball stays in its state of rest, on the tee, until the golf club hits it, i.e. , applies an external force on it.
Hence we can say that Newton's First Law of Motion is the principle which is most suitable for explaining this phenomenon.
The answer to this question would be: <span>A) animals that live in deserts
</span>Desert temperature is high, especially in the day, <span>An animal that lives in the desert needs to adapt to the high temperature either by reducing the heat or by increasing heat loss. By becoming nocturnal, the animal also able to evade the sunlight so it was less exposed to the heat.
Unlike other option, the desert is lacking water. Desert is mostly dry and water would be a resource that hard to find. In this case, k</span><span>idneys adapted to check water loss would be a great help</span>
For a curved mirror, all points have the same normal and the angle of incidence is also equal to the angle of reflection.
According to the laws of reflection, the incident ray, reflected ray and normal all lie on the same plane. For a curved mirror, the normal remains the same at all points along the curved mirror.
Again, the angle made between the incident ray and the normal is the same as the angle made between the reflected ray and the normal. Therefore, the angle of reflection is equal to the angle of incidence.
Learn more: brainly.com/question/17638582
Convert 220 lb to kg.
220/2.2 = 100kg.
W = Fd (In this case, F is the weight)
W = (100)(2)
W = 200J
P = W/t
P = (200)/(1.2)
P = 166.67W
Answer:
Speed of the wave is 7.87 m/s.
Explanation:
It is given that, tapping the surface of a pan of water generates 17.5 waves per second.
We know that the number of waves per second is called the frequency of a wave.
So, f = 17.5 Hz
Wavelength of each wave,
Speed of the wave is given by :
v = 7.87 m/s
So, the speed of the wave is 7.87 m/s. Hence, this is the required solution.