1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetllana [295]
3 years ago
15

Suppose that an object is moving along a vertical line. Its vertical position is given by the equation L(t) = 2t3 + t2-5t + 1, w

here distance is measured in meters and time in seconds. Find the approximate value of the average velocity (accurate up to three or more decimal places) in the given time intervals. TL between t1-5 s and t2-8 s: between t1-4 s and t2-9 s: between t1-1 s and 12-7s: 8 TTL 8 TTL 8
Physics
1 answer:
Tatiana [17]3 years ago
5 0

Answer:

The average velocity is

266\frac{m}{s},274\frac{m}{s} and 117\frac{m}{s} respectively.

Explanation:

Let's start writing the vertical position equation :

L(t)=2t^{3}+t^{2}-5t+1

Where distance is measured in meters and time in seconds.

The average velocity is equal to the position variation divided by the time variation.

V_{avg}=\frac{Displacement}{Time} = Δx / Δt = \frac{x2-x1}{t2-t1}

For the first time interval :

t1 = 5 s → t2 = 8 s

The time variation is :

t2-t1=8s-5s=3s

For the position variation we use the vertical position equation :

x2=L(8s)=2.(8)^{3}+8^{2}-5.8+1=1049m

x1=L(5s)=2.(5)^{3}+5^{2}-5.5+1=251m

Δx = x2 - x1 = 1049 m - 251 m = 798 m

The average velocity for this interval is

\frac{798m}{3s}=266\frac{m}{s}

For the second time interval :

t1 = 4 s → t2 = 9 s

x2=L(9s)=2.(9)^{3}+9^{2}-5.9+1=1495m

x1=L(4s)=2.(4)^{3}+4^{2}-5.4+1=125m

Δx = x2 - x1 = 1495 m - 125 m = 1370 m

And the time variation is t2 - t1 = 9 s - 4 s = 5 s

The average velocity for this interval is :

\frac{1370m}{5s}=274\frac{m}{s}

Finally for the third time interval :

t1 = 1 s → t2 = 7 s

The time variation is t2 - t1 = 7 s - 1 s = 6 s

Then

x2=L(7s)=2.(7)^{3}+7^{2}-5.7+1=701m

x1=L(1s)=2.(1)^{3}+1^{2}-5.1+1=-1m

The position variation is x2 - x1 = 701 m - (-1 m) = 702 m

The average velocity is

\frac{702m}{6s}=117\frac{m}{s}

You might be interested in
The radius of a small ball is around 3.79747 cm. The radius of a basketball is about 3.16 times larger. What is the ratio of the
Svetradugi [14.3K]

Explanation:

The ratio of the areas is the square of the ratio of the radii.

A/A = 3.16² = 9.99

The ratio of the volumes is the cube of the ratio of the radii.

V/V = 3.16³ = 31.6

3 0
4 years ago
Compressional forces within the crust can produce:
brilliants [131]
<span>tension, compression, and shearing and can i get brainliest plz</span>
4 0
3 years ago
A bird watcher meanders through the woods, walking 1.93 km due east, 1.03 km due south, and 3.84 km in a direction 52.8 ° north
Sedaia [141]

Answer:

Magnitude of displacement = 2.07 km

Magnitude of average velocity = 1.17 kmph

Explanation:

Let east represent positive x axis and north represent positive y axis.

A bird watcher meanders through the woods, walking 1.93 km due east, 1.03 km due south, and 3.84 km in a direction 52.8 ° north of west.

1.93 km due wast

           s ₁ = 1.93 i km

1.03 km due south

           s₂ = -1.03 j km

3.84 km in a direction 52.8 ° north of west

           s₃ = -3.84 cos 52.8 i + 3.84 sin 52.8 j = -2.32 i + 3.06 j km

Total displacement

          s = s ₁+  s₂+ s₃ = 1.93 i - 1.03 j -2.32 i + 3.06 j = -0.39 i + 2.03 j

  Magnitude of displacement, =\sqrt{(-0.39)^2+2.03^2}=2.07km

Time taken = 1.771 hour

Magnitude of average velocity, =\frac{2.07}{1.771}=1.17km/hr

7 0
3 years ago
A stone dropped from the top of a 80m high building strikes the ground at 40 m/s after falling for 4 seconds. The stone's potent
Sergeu [11.5K]

Answer: c. 40m

Explanation:

See picture

3 0
3 years ago
The radius of the aorta is about 1 cm and the blood flowing through it has a speed of about 30 cm/s. Calculate the average speed
puteri [66]

Answer:

The average speed of the blood in the capillaries is 0.047 cm/s.

Explanation:

Given;

radius of the aorta, r₁ = 1 cm

speed of blood, v₁ = 30 cm/s

Area of the aorta, A₁ = πr₁² = π(1)² = 3.142 cm²

Area of the capillaries, A₂ = 2000 cm²

let the average speed of the blood in the capillaries = v₂

Apply continuity equation to determine the average speed of the blood in the capillaries.

A₁v₁ = A₂v₂

v₂ = (A₁v₁) / (A₂)

v₂ = (3.142 x 30) / (2000)

v₂ = 0.047 cm/s

Therefore, the average speed of the blood in the capillaries is 0.047 cm/s.

4 0
2 years ago
Other questions:
  • Suppose a 0.04-kg car traveling at 2.00 m/s can barely break an egg. What is the min
    7·1 answer
  • (this is somehow part of my science unit, dont ask why)
    15·1 answer
  • If the frequency of a sound wave is 990 Hz, calculate its wavelength. (Assume the air temperature is 0°C.)
    7·1 answer
  • What process takes place within mitochondria? A: cellular respiration. B: photosynthesis C: protein assembly. D: reproduction
    12·2 answers
  • Which of these is a cash crop?<br><br> A. Cucumbers <br> B. Strawberries<br> C. Latex<br> D. Grass
    7·2 answers
  • The 9-m boom AB has a fixed end A. A steel cable is stretched from the free end B of the boom to a point Clocated on the vertica
    13·1 answer
  • There are 13 boys are 4 girls in the jazz band find the ratio of the number of boys in the band to the total number of students
    13·1 answer
  • An object that does not allow light to pass through it is
    5·2 answers
  • ***PLEASE HELP*** (you don’t have to answer all but at least 1 or 2 answers would help!!!)
    7·1 answer
  • A physics teacher performed a demonstration for a science class by pulling a crate across the floor
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!