1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetllana [295]
3 years ago
15

Suppose that an object is moving along a vertical line. Its vertical position is given by the equation L(t) = 2t3 + t2-5t + 1, w

here distance is measured in meters and time in seconds. Find the approximate value of the average velocity (accurate up to three or more decimal places) in the given time intervals. TL between t1-5 s and t2-8 s: between t1-4 s and t2-9 s: between t1-1 s and 12-7s: 8 TTL 8 TTL 8
Physics
1 answer:
Tatiana [17]3 years ago
5 0

Answer:

The average velocity is

266\frac{m}{s},274\frac{m}{s} and 117\frac{m}{s} respectively.

Explanation:

Let's start writing the vertical position equation :

L(t)=2t^{3}+t^{2}-5t+1

Where distance is measured in meters and time in seconds.

The average velocity is equal to the position variation divided by the time variation.

V_{avg}=\frac{Displacement}{Time} = Δx / Δt = \frac{x2-x1}{t2-t1}

For the first time interval :

t1 = 5 s → t2 = 8 s

The time variation is :

t2-t1=8s-5s=3s

For the position variation we use the vertical position equation :

x2=L(8s)=2.(8)^{3}+8^{2}-5.8+1=1049m

x1=L(5s)=2.(5)^{3}+5^{2}-5.5+1=251m

Δx = x2 - x1 = 1049 m - 251 m = 798 m

The average velocity for this interval is

\frac{798m}{3s}=266\frac{m}{s}

For the second time interval :

t1 = 4 s → t2 = 9 s

x2=L(9s)=2.(9)^{3}+9^{2}-5.9+1=1495m

x1=L(4s)=2.(4)^{3}+4^{2}-5.4+1=125m

Δx = x2 - x1 = 1495 m - 125 m = 1370 m

And the time variation is t2 - t1 = 9 s - 4 s = 5 s

The average velocity for this interval is :

\frac{1370m}{5s}=274\frac{m}{s}

Finally for the third time interval :

t1 = 1 s → t2 = 7 s

The time variation is t2 - t1 = 7 s - 1 s = 6 s

Then

x2=L(7s)=2.(7)^{3}+7^{2}-5.7+1=701m

x1=L(1s)=2.(1)^{3}+1^{2}-5.1+1=-1m

The position variation is x2 - x1 = 701 m - (-1 m) = 702 m

The average velocity is

\frac{702m}{6s}=117\frac{m}{s}

You might be interested in
) Continuing on Problem 1, assume a strain gage was bonded to the cylinder wall surface in the direction of the axial strain. Th
zzz [600]

Answer:

See attached document

Explanation:

Entire process for deriving the asked expression dV across the bridge as function of dP is illustrated in the attachment below.

The document gives a step-by step process for arriving at the expression. However, manipulation of algebraic equations is skipped for the conciseness of the document.

It also gives the expression for the case when all resistors have different nominal values.

Download docx
6 0
3 years ago
What is the magnitude of the magnetic dipole moment of the bar magnet
Annette [7]

The magnitude of the magnetic dipole moment of the bar magnet is 1.2 Am²

<h3> Magnetic dipole moment of the bar magnet</h3>

The magnitude of the magnetic dipole moment of the bar magnet at distance from its axis is calculated as follows;

B = \frac{2\mu_0m}{4\pi r^3} \\\\m = \frac{4\pi r^3 B}{2\mu_0}

where;

  • B is magnetic field
  • m is dipole moment
  • μ is permeability of free space

m = (4π x 0.1³ x 2.4 x 10⁻⁴)/(2 x 4π x 10⁻⁷)

m = 1.2 Am²

The complete question is below:

What is the magnitude of the magnetic dipole moment of the bar magnet from 0.1 m of its axis and magnetic field strength of 2.4 x 10⁻⁴ T.

Learn more about dipole moment here: brainly.com/question/27590192

#SPJ11

6 0
2 years ago
4. A cinder block is sitting on a platform 20 m high. It has a mass of 4 kg. The block has energy. Calculate it.
zavuch27 [327]

Answer:

Explanation:

Since the block is at rest in an elevated position, we can assume that it only has potential energy.

U=mgh is the formula for potential energy where U=potential energy, m= mass, g=acceleration due to gravity, and h=height.

Plug in known variables....

U=4kg*9.8m/s^2*20m

U=784 joules of potential energy or letter A.

4 0
3 years ago
Which of the following forms of energy must an object have if it is moving at a constant velocity?
lbvjy [14]

Answer:

Kinetic energy

Explanation:

5 0
3 years ago
Brainly app · Installed
Sauron [17]
I need a picture plz I don’t know what to answer.
6 0
3 years ago
Other questions:
  • How can motion be described?
    15·2 answers
  • What theory held that the earth was the center of the universe and that the sun, moon, and planets revolved around it?
    12·1 answer
  • The emission spectrum of an atom provides information primarily regarding ?
    6·1 answer
  • The region, or sphere, of influence around a magnet is called the magnetic_____.
    7·2 answers
  • At the instant the traffic light turns green, a car that has been waiting at an intersection starts ahead with a constant accele
    15·1 answer
  • What does it mean by km/h/s?
    8·2 answers
  • Does the mass of a supermassive black hole correlate with any other part of a galaxy?
    13·1 answer
  • Need help please !!!! Hurry
    10·2 answers
  • Giúp mình với ạ…mình đang gấp…
    7·1 answer
  • Describe what happened. When was there more potential energy in the system?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!