The solution step by step. 43 comes from adding all the given numbers together.
Answer:
The point at (-7, -5) = a
The point at (9, 3) = b
The point at (-3, 7) = c
The "a" point of the triangle is 12 units away from the center point.
So, 12 x 1/4
=> 12/4
=> 3
So, the "a" point of the dilated figure is 3 units left from the center.
=> So, the dilated "a" point is at (2, -5)
The "b" point is 8/4 (= rise/run = y-axis / x-axis) from the center point.
=> 8/4 = 2
So, the "b" point of the dilated figure is 1 unit right and 2 units up from the center point.
=> So, the dilated "b" point is at (6, -3)
The "c" point is 12/8 units away from the center point.
=> 12/8 x 1/4
=> 3/2
So, the "c" point of the dilated figure is 3 units up and 2 units left from the center point.
=> So, the dilated "c" point is at (3, -2)
Answer:
dy/dx=8
Step-by-step explanation:
note this differentiating a constant you get zero for that of a function like 8x you would use the index or power of x to multiply the coefficient of the x after substrate 1 from the power of the x putting that in writing for the above question we get
y'=dy/dx=(8*1)x^(1-1) - 0
y'=dy/dx=8x^0
y'=dy/dx=8
Answer:
Explanation:
<u>1. Calculate the monthly interest owed during year 1</u>
<u />
- <em>Interest for first year: 8%</em>
- The monthly rate is the yearly rate divided by 12: 8% / 12 = 0.08/12
- The monthly interest owed is the monthly rate times the balance: (0.08/12)×$1,800 = $12.00
<u>2. Calculate the monthly interest owed during year 2</u>
<u />
- <em>Interest for second year: 23%</em>
- The montly rate is the yearly rate divided by 12: 23% / 12 = 0.23/12
- The monthly interest owed is the monthly rate times the balance: (0.23/12)×$1,800 = $34.50
<u>3. Calculate the difference</u>
- Difference in the monthly interest owed during year 1 and year 2 = $34.50 - $12.00 = $22.50
Hence, the answer is the option c) $22.50
Answer:
384 cm²
Step-by-step explanation:
The shape of the figure given in the question above is simply a combined shape of parallelogram and rectangle.
To obtain the area of the figure, we shall determine the area of the parallelogram and rectangle. This can be obtained as follow:
For parallelogram:
Height (H) = 7.5 cm
Base (B) = 24 cm
Area of parallelogram (A₁) =?
A₁ = B × H
A₁ = 24 × 7.5
A₁ = 180 cm²
For rectangle:
Length (L) = 24 cm
Width (W) = 8.5 cm
Area of rectangle (A₂) =?
A₂ = L × W
A₂ = 24 × 8.5
A₂ = 204 cm²
Finally, we shall determine the area of the shape.
Area of parallelogram (A₁) = 180 cm²
Area of rectangle (A₂) = 204 cm²
Area of figure (A)
A = A₁ + A₂
A = 180 + 204
A = 384 cm²
Therefore, the area of the figure is 384 cm²