Answer:
0.12M
Explanation:
A balanced equation for the reaction will go a great deal in obtaining our desired result. So, let us write a balanced equation for the reaction
HCl + NaOH —> NaCl + H2O
From the above equation,
nA (mole of the acid) = 1
nB (mole of the base) = 1
Data obtained from the question include:
Vb (volume of the base) = 30mL
Mb (Molarity of the base) = 0.1M
Va (volume of the acid) = 25mL
Ma (Molarity of the acid) =?
The molarity of the acid can be obtained as follow:
MaVa/MbVb = nA/nB
Ma x 25/ 0.1 x 30 = 1
Cross multiply to express in linear form
Ma x 25 = 0.1 x 30
Divide both side by 25
Ma = (0.1 x 30) / 25
Ma = 0.12M
The molarity of the acid is 0.12M
The surface would be flat
If more heat is removed from the reaction the rate of reaction change as below to counter the action
The rate of the <em>forward reaction increase</em> and produces more <em>zinc chloride</em>
<u><em> explanation</em></u>
- <u><em> </em></u>The reaction of zinc and HCl to produce ZnCl and H2 <u><em>is </em></u> exothermic reaction, heat is produced as one product and by removing heat it favor forward reaction
- The position of equilibrium moves to the right since removing heat led to decrease of temperature and more zinc chloride is produced.
According to Raoult's low:
We will use this formula: Vp(Solution) = mole fraction of solvent * Vp(solvent)
∴ mole fraction of solvent = Vp(Solu) / Vp (Solv)
when we have Vp(solu) = 25.7 torr & Vp(solv) = 31.8 torr
So by substitution:
∴ mole fraction of solvent = 25.7 / 31.8 =0.808
when we assume the moles of solute NaCl = X
and according to the mole fraction of solvent formula:
mole fraction of solvent = moles of solvent / (moles of solvent + moles of solute)
by substitute:
∴ 0.808 = 0.115 / (0.115 + X)
So X (the no.of moles of NaCl) = 0.027 m
The balanced equation for the above reaction is as follows;
2S + 3O₂ --> 2SO₃
Stoichiometry of O₂ to SO₃ is 3:2
O₂ is the limiting reactant and S is provided in excess. since O₂ is the limiting reactant, the whole amount is consumed in the reaction and amount of product formed depends on amount of limiting reactant present.
Number of O₂ moles reacted- 4 g / 32 g/mol = 0.125 mol
3 mol of O₂ forms 2 mol of SO₃
therefore when 0.125 mol of O₂ reacts number of SO₃ moles - 2/3 x 0.125 mol
Number of SO₃ moles formed - 0.0833 mol
Answer is 4) 0.08 mol