It's back wards lol you need to take it right
Explanation:
Scientist use trees a whole lot to look at climate of the past by examining tree rings.
These are layers of cambium in each successive years formed. They have an annual growth pattern and are known as tree rings.
Tree rings can be used to decipher the age of a tree.
- These three rings can be used to interpret climatic patterns.
- During a wet climate, the tree rings are more robust and bigger.
- In a dry climate, the rings are thinner.
- These alternating patterns can be used to decipher the climatic signatures in a tree.
- Sometimes, it is possible to evaluate some certain isotopes that are useful in climatic studies.
learn more:
Climate change brainly.com/question/7824762
#learnwithBrainly
Answer: 1.25 miles per minute
Explanation:
Average speed is the rate of change of total distance covered per unit time.
i.e Average speed = (Total distance / Time taken)
Total distance covered = (25miles + 40 miles + 70 miles + 15 miles)
= 150 miles
Total time taken = ( 15 minutes + 30 minutes + 1 hour + 15 minutes) = 120 minutes
Since 60 minutes = 1 hour, the total time taken is 120 minutes
Now, apply Average speed = (Total distance / Time taken)
= (150 miles / 120 minutes)
= 1.25 miles per minutes
Thus, Joseph drove with an average speed of 1.25 miles per minute.
Answer:
False
Explanation:
It is coal-fired power plants that produce mercury, air pollution, and carbon dioxide.
However, nuclear energy produces radioactive waste that must be stored for many years before it can be safely disposed.
Answer:
It is due to the nature of the reactants
Explanation:
To ignite a solid, we require more heat component compared to liquids and gases. For ignition to occur, oxygen gas combines with a reactant in most cases.
Some factors affect the rate rate at which a chemical proceeds. One of the factors is the nature of reactants.
The solid phase is very slow while the gaseous phase is rapid and fast.
solid phase < liquid phase < gas phase
Gases are free and the molecules move in all direction. They easily combine and react very fast.