The question states that both parts of Noshi's desk were shaped like trapezoids and both had a height of 3.
We know that the formula for area of a trapezoid is (a+b)/2 * h, where a and b are bases of the trapezoid and h is the height. Note: This is like any other form of trying to find the area, because we are doing base times height, however, we need to divide the sum of the bases by 2 to find the average base length.
Let's call the first trapezoid on the left Trapezoid A and the second slanted trapezoid Trapezoid B.
Area of Trapezoid A = (a+b)/2 * h = (5+8)/2 * 3 = 13/2 * 3 = 6.5 * 3 = 19.5 feet
Area of Trapezoid B = (a+b)/2 * h = (4+9)/2 * 3 = 13/2 * 3 = 6.5 * 3 = 19.5 feet
To find the area of Noshi's total desk, we simply need to add the areas of Trapezoid A and Trapezoid B together.
19.5 feet + 19.5 feet = 39 feet
Therefore, the area of Noshi's desk is 39 feet.
Hope this helps! :)
Answer: Choice C. 
============================================
Explanation:
The domain is the set of all allowed x inputs.
Here we see that x = -3 is the smallest x value possible as it is from the left-most point. The graph goes on forever to the right, so there is no largest x value. Effectively infinity is the largest x value even though infinity is not a number.
We can say the domain is
which can be simplified to
or 
In short: x can be -3 or larger.
Answer: It is only the 3rd equation that is a good example to Jeremy's argument. Others are counter examples to Jeremy's argument.
Step-by-step explanation:
Let us consider the general linear equation
Y = MX + C
On a coordinate plane, a line goes through points (0, negative 1) and (2, 0).
Slope = ( 0 - -1)/( 2- 0) = 1/2
When x = 0, Y = -1
Substitutes both into general linear equation
-1 = 1/2(0) + C
C = -1
The equations for the coordinate is therefore
Y = 1/2X - 1
Let's check the equations one after the other
y = negative one-half x minus 1
Y = -1/2X - 1
y = negative one-half x + 1
Y = -1/2X + 1
y = one-half x minus 1
Y = 1/2X - 1
y = one-half x + 1
Y = 1/2X + 1
It is only the 3rd equation that is a good example to Jeremy's argument. Others are counter examples to Jeremy's argument.
The square root parent function is:
B. F(x)= √x
Answer and Step-by-step explanation:
The answer is that <u>A'C' will be 1.5 times longer than AC.</u>
<u></u>
This is because you are dilating the figure by a scale of 1.5.
<em><u>#teamtrese #PAW (Plant and Water)</u></em>