





With the initial condition
, we find



So the particular solution to the IVP is

The derivative is the rate of change of a function, basically represents the slope at different points. To find the derivative of the given function you can use the power rule, which means, if n is a real number, d/dx(x^n)= nx^(n-1). This is a simplification of the chain rule based on the fact that d/dx(x)=1. Anyway, this means that d/dx(x^3 + 1)= 3x^2. Here n is 3 and so it is 3*x^(3-1)= 3x^2. The derivative of x^3+1 is 3x^2.
If you are wondering what happened to the 1, for any constant C, d/dx(C)=0.
-18 +15x = y
Spam characters: aksjakfhakdjk
<span> D Q</span>
TC<span> = D x P <span>+ ___ x Cp + ____ x
Cs</span></span>
<span>Q 2</span>
TC: Total Cost
P: Price per unit
Q: Quantity
Cp: Cost of issuance of a purchase order
<span>Cs: storage cost per unit</span>
Answer:
Jada should have multiplied both sides of the equation by 108.
Step-by-step explanation:
The question is incomplete. Find the complete question in the comment section.
Given the equation -4/9 = x/108, in order to determine Jada's error, we need to solve in our own way as shown:
Step 1: Multiply both sides of the equation by -9/4 as shown:
-4/9 × -9/4 = x/108 × -9/4
-36/-36 = -9x/432
1 = -9x/432
1 = -x/48
Cross multiplying
48 = -x
x = -48
It can also be solved like this:
Given -4/9 = x/108
Multiply both sides by 108 to have:
-4/9 * 108 = x/108 * 108
-4/9 * 108 = 108x/108
-432/9 = x
x = -48
Jada should have simply follow the second calculation by multiplying both sides of the equation by 108 as shown.