Answer:
11.9 is the pOH of a 0.150 M solution of potassium nitrite.
Explanation:
Solution : Given,
Concentration (c) = 0.150 M
Acid dissociation constant = 
The equilibrium reaction for dissociation of
(weak acid) is,

initially conc. c 0 0
At eqm.

First we have to calculate the concentration of value of dissociation constant
.
Formula used :

Now put all the given values in this formula ,we get the value of dissociation constant
.



By solving the terms, we get

No we have to calculate the concentration of hydronium ion or hydrogen ion.
![[H^+]=c\alpha=0.150\times 0.0533=0.007995 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%3D0.150%5Ctimes%200.0533%3D0.007995%20M)
Now we have to calculate the pH.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


pH + pOH = 14
pOH =14 -2.1 = 11.9
Therefore, the pOH of the solution is 11.9
Answer:
<h2>2.7 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>2.7 g/cm³</h3>
Hope this helps you
Answer:
d. 8 moles of H2O on the product side
Explanation:
Hello,
In this case, we need to balance the given redox reaction in acidic media as shown below:
![MnO_4^{1-} (aq) + Cl^{1-} (aq) \rightarrow Mn^{2+} (aq) + Cl_2 (g)\\\\(Mn^{7+}O^{2-}_4)^{1-} (aq) + Cl^{1-} (aq) \rightarrow Mn^{2+} (aq) + Cl_2 (g)\\\\\\\\(Mn^{7+}O^{2-}_4)^{1-} (aq)+8H^++5e^- \rightarrow Mn^{2+}+4H_2O\\\\2Cl^{1-}\rightarrow Cl_2^0+2e^-\\\\2*[(Mn^{7+}O^{2-}_4)^{1-} (aq)+8H^++5e^- \rightarrow Mn^{2+}+4H_2O]\\\\5*[2Cl^{1-}\rightarrow Cl_2^0+2e^-]\\\\\\\\2(Mn^{7+}O^{2-}_4)^{1-} (aq)+16H^++10e^- \rightarrow 2Mn^{2+}+8H_2O\\\\10Cl^{1-}\rightarrow 5Cl_2^0+10e^-\\](https://tex.z-dn.net/?f=MnO_4%5E%7B1-%7D%20%28aq%29%20%2B%20Cl%5E%7B1-%7D%20%28aq%29%20%5Crightarrow%20%20Mn%5E%7B2%2B%7D%20%28aq%29%20%2B%20Cl_2%20%28g%29%5C%5C%5C%5C%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%20%2B%20Cl%5E%7B1-%7D%20%28aq%29%20%5Crightarrow%20%20Mn%5E%7B2%2B%7D%20%28aq%29%20%2B%20Cl_2%20%28g%29%5C%5C%5C%5C%5C%5C%5C%5C%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B8H%5E%2B%2B5e%5E-%20%5Crightarrow%20Mn%5E%7B2%2B%7D%2B4H_2O%5C%5C%5C%5C2Cl%5E%7B1-%7D%5Crightarrow%20Cl_2%5E0%2B2e%5E-%5C%5C%5C%5C2%2A%5B%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B8H%5E%2B%2B5e%5E-%20%5Crightarrow%20Mn%5E%7B2%2B%7D%2B4H_2O%5D%5C%5C%5C%5C5%2A%5B2Cl%5E%7B1-%7D%5Crightarrow%20Cl_2%5E0%2B2e%5E-%5D%5C%5C%5C%5C%5C%5C%5C%5C2%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B16H%5E%2B%2B10e%5E-%20%5Crightarrow%202Mn%5E%7B2%2B%7D%2B8H_2O%5C%5C%5C%5C10Cl%5E%7B1-%7D%5Crightarrow%205Cl_2%5E0%2B10e%5E-%5C%5C)
Then, we add the half reactions:

Thereby, we can see d. 8 moles of H2O on the product side.
Best regards.