I heard that most of the time water found in watersheds aren’t usually clean nor safe for drinking, but i know that there are very few that are somewhat safe for drinking. It’s just not usually common to find clean and healthy watersheds though.
Answer:
1) single replacement
2) combustion reaction.
3) double replacement reaction
4) combination reaction
5) decomposition reaction
Explanation:
Chemical equation:
Fe₂CO₃ + 3C → 2Fe + 3CO
The given reaction is single replacement reaction. In this reaction carbon react with Fe₂CO₃ and replace the iron from CO₃²⁻ and form free iron and carbon monoxide.
Chemical equation:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
The given reaction is combustion reaction. In which ethene burn in the presence of oxygen form carbon dioxide and water.
Chemical equation:
Fe₂O₃ + 6HCl → 2FeCl₃ + 3H₂O
The given reaction is double replacement reaction. In which anion and cation of both reactants exchange with each others.
Chemical equation:
2Al + 2Br₂ → 2AlBr₃
The given reaction is combination reaction in which aluminium and bromine combine to form aluminium bromide.
Chemical equation:
C₆H₁₂O₆ → 6C + 6H₂O
The given reaction is decomposition reaction in which glucose molecule decompose to give water and carbon.
Answer:
The answer to your question is given below.
Explanation:
To prepare 50mL of 3M HCl, we must calculate the volume of the stock solution needed. This can obtained as follow:
Molarity of stock solution (M1) = 12M
Volume of stock solution needed (V1) =?
Molarity of diluted solution (M2) = 3M
Volume of diluted solution (V2) = 50mL
The volume of the stock solution needed can be obtained by using the dilution formula as shown below:
M1V1 = M2V2
12 x V1 = 3 x 50
Divide both side by 12
V1 = (3 x 50)/12
V1 = 12.5mL
The volume of the stock solution needed is 12.5mL
Therefore, to prepare 50mL of 3M HCl, we must measure 12.5mL of the stock solution i.e 12M HCl and then, add water to the mark in a 1L volumetric flask. Now we can measure out 50mL of the solution.
Answer:
By absorbing energy on evaporation and releasing it on condensation, it keeps water cool when the air is hot and warm when the air is cool.
Answer:
0.10 % w/w
Explanation:
The percent by mass (%w/w) is defined as one hundred times the ratio between the mass of solute (In this case aspirin, 0.05g) and the mass of solution (Mass solute + mass of water = 0.05g + 50g = 50.05g). The percent by mass is:
0.05g Aspirin / 50.05g * 100 =
0.10 % w/w