Answer:
a) ![m = \frac{1210-860}{5-0} =70](https://tex.z-dn.net/?f=%20m%20%3D%20%5Cfrac%7B1210-860%7D%7B5-0%7D%20%3D70)
Now we can find the intercept using the first condition:
![860 = 70*0 +b](https://tex.z-dn.net/?f=%20860%20%3D%2070%2A0%20%2Bb)
![b =860](https://tex.z-dn.net/?f=%20b%20%3D860)
And the model would be given by:
![y = 70 x +860](https://tex.z-dn.net/?f=%20y%20%3D%2070%20x%20%2B860)
![y= A e^{rt}](https://tex.z-dn.net/?f=%20y%3D%20A%20e%5E%7Brt%7D)
The initial amount is A = 860 and we have:
![y = 860 e^{rt}](https://tex.z-dn.net/?f=%20y%20%3D%20860%20e%5E%7Brt%7D)
Now we can use the second condition:
![1210= 860 e^{5r}](https://tex.z-dn.net/?f=%201210%3D%20860%20e%5E%7B5r%7D)
And solving for r we got:
![\frac{121}{86} = e^{5r}](https://tex.z-dn.net/?f=%20%5Cfrac%7B121%7D%7B86%7D%20%3D%20e%5E%7B5r%7D)
![r= 0.0682886](https://tex.z-dn.net/?f=r%3D%200.0682886)
And the model would be:
![y = 860 e^{0.0682886 t}](https://tex.z-dn.net/?f=%20y%20%3D%20860%20e%5E%7B0.0682886%20t%7D)
b) ![y = 70*10 +860=1560](https://tex.z-dn.net/?f=%20y%20%3D%2070%2A10%20%2B860%3D1560)
Step-by-step explanation:
Part a
For this case we have the following info given:
![x_1 = 0 , y_1 = 860](https://tex.z-dn.net/?f=%20x_1%20%3D%200%20%2C%20y_1%20%3D%20860)
Where 0 represent the starting year in 1990.
And 5 years later we have 1210 people:
![x_2 = 5, y_2 = 1210](https://tex.z-dn.net/?f=%20x_2%20%3D%205%2C%20y_2%20%3D%201210)
And we want to create a model like this:
![y = mx +b](https://tex.z-dn.net/?f=%20y%20%3D%20mx%20%2Bb)
And we can estimate the slope like this:
And replacing we got:
![m = \frac{1210-860}{5-0} =70](https://tex.z-dn.net/?f=%20m%20%3D%20%5Cfrac%7B1210-860%7D%7B5-0%7D%20%3D70)
Now we can find the intercept using the first condition:
![860 = 70*0 +b](https://tex.z-dn.net/?f=%20860%20%3D%2070%2A0%20%2Bb)
![b =860](https://tex.z-dn.net/?f=%20b%20%3D860)
And the model would be given by:
![y = 70 x +860](https://tex.z-dn.net/?f=%20y%20%3D%2070%20x%20%2B860)
And if we want an exponential model like this:
![y= A e^{rt}](https://tex.z-dn.net/?f=%20y%3D%20A%20e%5E%7Brt%7D)
The initial amount is A = 860 and we have:
![y = 860 e^{rt}](https://tex.z-dn.net/?f=%20y%20%3D%20860%20e%5E%7Brt%7D)
Now we can use the second condition:
![1210= 860 e^{5r}](https://tex.z-dn.net/?f=%201210%3D%20860%20e%5E%7B5r%7D)
And solving for r we got:
![\frac{121}{86} = e^{5r}](https://tex.z-dn.net/?f=%20%5Cfrac%7B121%7D%7B86%7D%20%3D%20e%5E%7B5r%7D)
![r= 0.0682886](https://tex.z-dn.net/?f=r%3D%200.0682886)
And the model would be:
![y = 860 e^{0.0682886 t}](https://tex.z-dn.net/?f=%20y%20%3D%20860%20e%5E%7B0.0682886%20t%7D)
Part b
For this case we want to estimate the population in the year 2000. And that represent 10 years from 1990 so then x =10 and replacing we got:
![y = 70*10 +860=1560](https://tex.z-dn.net/?f=%20y%20%3D%2070%2A10%20%2B860%3D1560)
And for the exponential model we have:
![y = 860 e^{0.0682886*10} =1702.441](https://tex.z-dn.net/?f=%20y%20%3D%20860%20e%5E%7B0.0682886%2A10%7D%20%3D1702.441)