Answer: The correct answer is The aplastic potential energy of the spring will be two times greater than the gravitational potential energy of the object.
Explanation: The formula for Gravitational potential energy is= mgh where
m= mass
g= 9.8
h= height
On the other hand the formula for elastic potential energy is (1/2)KX^2
Where K is the spring. By changing the values of H and X, we will see elastic potential energy will remain more.
Answer:
1.) The property by the virtue of which the metals can be beaten into sheets.
<u>Malleability</u>
<u>C</u><u>l</u><u>i</u><u>c</u><u>k</u><u> </u><u>i</u><u>t</u><u> </u><u>w</u><u>h</u><u>i</u><u>l</u><u>e</u><u> </u><u>a</u><u>s</u><u>k</u><u>i</u><u>n</u><u>g</u><u> </u><u>q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>i</u><u>t</u><u> </u><u>a</u><u>l</u><u>l</u><u>o</u><u>w</u><u> </u><u>u</u><u> </u><u>t</u><u>o</u><u> </u>paste image.<u> </u>
To solve this question,
let us first calculate how much all the nucleons will weigh when they are apart,
that is:
<span>Mass of 25 protons = 25(1.0073) = 25.1825 amu </span>
Mass of neutrons = (55-25)(1.0087) = 30.261 amu
So, total mass of nucleons = 30.261+25.1825 =
55.4435 amu
<span>Now we subtract the mass of nucleons and mass of the Mn
nucleus:
55.4435 - 54.938 = 0.5055 amu
This difference in mass is what we call as the mass defect of
a nucleus. Now we calculate the binding energy using the formula:</span>
<span> E=mc^2 </span>
<span>But first convert mass defect in units of SI (kg):
Δm = 0.5055 amu = (0.5055) / (6.022x10^26)
<span>Δm = 8.3942x10^-28 kg</span>
Now applying the formula,
E=Δm c^2
E=(8.3942x10^-28)(3x10^8)^2
E=7.55x10^-11 J</span>
Convert energy from Joules
to mev then divide by total number of nucleons (55):
E = 7.55x10^-11 J *
(6.242x10^12 mev / 1 J) / 55 nucleons
<span>E = 8.57 mev / nucleon</span>
<span>a space or vesicle within the cytoplasm of a cell, enclosed by a membrane and typically containing fluid.</span>