Answer:
Yes, it is possible. Let us consider an example of two solutions, that is, solution A having 20 percent mass RbCl (rubidium chloride) and solution B is having 15 percent by mass NaCl or sodium chloride.
It is found that solution A is having more concentration in comparison to solution B in terms of mass percent. The formula for mass percent is,
% by mass = mass of solute/mass of solution * 100
Now the formula for molality is,
Molality = weight of solute/molecular weight of solute * 1000/ weight of solvent in grams
Now molality of solution A is,
m = 20/121 * 1000/80 (molecular weight of RbCl is 121 grams per mole)
m = 2.07
Now the molality of solution B is,
m = 15/58.5 * 1000/85
m = 3.02
Therefore, in terms of molality, the solution B is having greater concentration (3.02) in comparison to solution A (2.07).
MgqI% = the formula and mass for H20 and that should be your answer for water
The simple equation used to calculate work is force multiplied by distance, thus as this is the case increasing the distance by a certain amount, assuming the force applied to the object is constant, the amount of work you are doing on the box for instance pushing it, is going to be greater
Since you are pushing the box with the same force covering a greater distance with the force.
Answer: The unknown solution had the lower concentration
Explanation: concentration will always move from higher to lower region. If the concentration of the unknown solution has increased, it therefore means that the initial concentration of the unknown solution was low
Answer:
random internal motion of atoms and molecule
Explanation:
The primary cause of diffusion is the random internal motion of atoms and molecules.
Randomness of atoms and molecules results in diffusion.
- Diffusion is the movement of particles from a region of high concentration to that of lower concentration.
- Substances often tend to spread out over the concentration gradient.
- Therefore, they have this propensity to be randomized.