Answer:
This is all true if the atom has to be neutral.
Also what does V mean?
Helium: one shell with 2 neutrons and 2 protons in the center, with 2 electrons in the first shell.
Lithium: two shells with 4 neutrons and 3 protons in the center, with 2 electrons in the first shell, and 1 electron in the second shell.
Nitrogen: two shells with 7 neutrons and 7 protons in the center, with 2 electrons in the first shell, and 5 electrons in the second shell.
Flourine: two shells with 9 protons and 10 neutrons in the center, with 2 electrons in the first shell, and 7 electrons in the second shell.
Neon: two shells with 10 neutrons and 10 protons in the center, with 2 electrons in the first shell, and 8 electrons in the second shell.
Boron: two shells with 6 neutrons and 5 protons in the center, with 2 electrons in the first shell, and 3 electrons in the second shell.
Answer:
In a chemical equilibrium, the forward and reverse reactions occur at equal rates, and the concentrations of products and reactants remain constant. A catalyst speeds up the rate of a chemical reaction, but has no effect upon the equilibrium position for that reaction.
Explanation:
Assuming that the solution is simply an aqueous solution
so that it is purely made of NaClO4 (the solute) and water (the solvent), then
I believe the dissolved species would only be the ions of NaClO4, these are:
Na+
ClO4 -
Answer:
2
Explanation:
First, find the hydronium ion concentration of the solution with a pH of 4.
[H₃O⁺] = 10^-pH
[H₃O⁺] = 10⁻⁴
[H₃O⁺] = 1 × 10⁻⁴
Next, multiple the hydronium ion concentration by 100 to find the hydronium ion concentration of the new solution.
[H₃O⁺] = 1.0 × 10⁻⁴ × 100 = 0.01
Lastly, find the pH.
pH = -log [H₃O⁺]
pH = -log (0.01)
pH = 2
The pH of a solution that has a hydronium ion concentration 100 times greater than a solution with a pH of 4 is 2.
Hope this helps.