Answer:
N = 23.4 N
Explanation:
After reading that long sentence, let's solve the question
The contact force is the so-called normal in this case we can find it by writing the translational equilibrium equation for the y axis
N - w₁ -w₂ =
N = m₁ g + m₂ g
N = g (m₁ + m₂)
let's calculate
N = 9.8 (0.760 + 1.630)
N = 23.4 N
This is the force of the support of the two blocks on the surface.
For Blake:
3 boxes at a distance of 10 meters each, each box weighs 20 N
Work done by Blake = 3 * 10m * 20N
= 600 J
Power = 600 J/ 2 min
= 300 J/min
For Sandra:
4 boxes, 15 N each at a distance of 12 meters each.
Work done by Sandra = 4 * 15 N *12m
= 720 J
Power = 720 J/ 4 min
= 180 J/min
Blake does less work than Sandra.
Blake's power is more than Sandra's.
Answer:
D
Explanation:
A is wrong as otherwise the ocean would be black as light could not pass through it to create images.
B is wrong. This is a weird one as the electromagnetic spectrum attached below shows that radio waves have the least amount of energy vs gamma which has the highest and you can't really compare this to sound waves.
C just straight up false.
D is correct, no way to remember this, just learn it. a couple of facts about transverse waves of google. Electromagnetic waves are a type of transverse waves. These waves do not require a medium to travel. As the name of the waves imply, these waves show electrical and magnetic properties. No any charge occur in the waves. Electromagnetic waves work by the laws of reflection and refraction. They travel as straight lines in a vacuum at a speed of 3 x 10 8 ms -1.
Extra info:
As gamma waves have the highest energy it means that the waves are closer together (the wavelength is smaller) and they create more heat. Also gamma waves go through everything, X-ray only through skin and bounces of dense things like bones, which creates images. These eventually weaken more and more until radio waves do not pass through anything and just bounces around and everywhere which allows you to gain more coverage on a radio then on a cell phone.
I = V/Z
V = voltage, I = current, Z = impedance
First let's find the total impedance of the circuit.
The impedance of the resistor is:
= R
R = resistance
Given values:
R = 1200Ω
Plug in:
= 1200Ω
The impedance of the inductor is:
= j2πfL
f = source frequency, L = inductance
Given values:
f = 59Hz, L = 2.4H
Plug in:
= j2π(59)(2.4) = j889.7Ω
Add up the individual impedances to get the Z, and convert Z to polar form:
Z =
+ 
Z = 1200 + j889.7
Z = 1494∠36.55°Ω
I = V/Z
Given values:
V = 170∠0°V (assume 0 initial phase)
Z = 1494∠36.55°Ω
I = 170∠0°/1494∠36.55°Ω
I = 0.1138∠-36.55°A
Round the magnitude of I to 2 significant figures and now you have your maximum current:
I = 0.11A