Answer:

Explanation:
if rho is the resistivity, then according to the proper equation re-arrangement the resistance is G. Then, Area can be calculated by radius and dividing their product by the length of channel.
Answer:
3.33 seconds
Explanation:
We can use the velocity formula [ v = u + at ] to solve.
Find the value "u".
135km/h -> 135km*1000m/3600s -> 37.5m/s
Find the value "v".
75km/h -> 75km*1000m/3600s -> 20.83m/s
Keep in mind we are dealing with "deceleration" so when we input 5.0m/s into the formula, it will be a negative value.
Now, find "t" which is the value we aren't given with the values we're given in the question.
20.83 = 37.5 - 5t
-16.67 = -5t
3.33 = t
Best of luck!
Answer:
Explanation:
Given

Motor reverse its direction when \omega =0



(b)





Answer:
B) Angular velocity
Explanation:
The equivalent of Newton's second law for the rotational motions can be written as:

where
is the net torque applied to the object
I is the moment of inertia
is the angular acceleration
From the formula we see that when a constant net torque
is applied, then the object also has a constant angular acceleration,
.
But we also know that

where
is the angular velocity: so, a constant angular acceleration means that the angular velocity of the object is changing, so the correct answer is
B) Angular velocity
(moment of inertia and center of gravity do not change since they only depend on the mass and the geometry/shape of the object, which do not change)
Answer:
B = 1.353 x 10⁻³ T
Explanation:
The Magnetic field within a toroid is given by
B = μ₀ NI/2πr, where N is the number of turns of the wire, μ₀ is the permeability of free space, I is the current in each turn and r is the distance at which the magnetic field is to be determined from the center of the toroid.
To find r we need to add the inner radius and outer radius and divide the value by 2. Hence,
r = (a + b)/2, where a is the inner radius and b is the outer radius which can be found by adding the length of a square section to the inner radius.
b = 25.1 + 3 = 28.1 cm
a = 25.1 cm
r = (25.1 + 28.1)/2 = 26.6 cm = 0.266m
B = 4π x 10⁻⁷ x 600 x 3/2π x 0.266
B = 1.353 x 10⁻³ T
The strength of the magnetic field at the center of the square cross section is 1.3 x 10⁻³ T