<span>If you can't measure the parallax that means that the star is far far away, beyond all possible reach of humanity with its current technology. The closer the star is the greater the parallax, so you either get a bigger, more powerful telescope, or you just accept that it's too far away to be measured at all. Eventually the technology will develop enough to measure it.</span>
Answer:
C) equal to zero
Explanation:
Electric potential is calculated by multiplying constant and charge, then dividing it by distance. The location that we want to measure is equidistant from two particles, mean that the distance from both particles is the same(r2=r1). The charges of the particle have equal strength of magnitude but the opposite sign(q2=-q1). The resultant will be:V = kq/r
ΔV= V1 + V2= kq1/r1 + kq2/r2
ΔV= V1 + V2= kq1/r1 + k(-q1)/(r)1
ΔV= kq1/r1 - kq1/r1
ΔV=0
The electric potential equal to zero
First let's convert everything into SI units.
The length of the blade is 3 inches. Keeping in mind that 1 inc=0.025 m, we have

The angular speed is 600 revolutions per minute. Keeping in mind that

and

, the angular speed becomes

And so, the linear velocity of the edge of the blade is equal to
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Geometry</u>
- Area of a Rectangle: A = lw
<u>Algebra I</u>
- Exponential Property:

<u>Calculus</u>
Derivatives
Differentiating with respect to time
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
<u>Step 1: Define</u>
Area is A = lw
2w = l
w = 300 m

<u>Step 2: Rewrite Equation</u>
- Substitute in <em>l</em>: A = (2w)w
- Multiply: A = 2w²
<u>Step 3: Differentiate</u>
<em>Differentiate the new area formula with respect to time.</em>
- Differentiate [Basic Power Rule]:

- Simplify:

<u>Step 4: Find Rate</u>
<em>Use defined variables</em>
- Substitute:

- Multiply:

- Multiply:
