3. Kinetic energy
4. Potential energy
5. Kinetic energy because it’s moving towards the waterfall otherwise there wouldn’t be a waterfall.
6. Kinetic energy
7. Kinetic energy
8. Potential energy
9. Potential energy
10. Kinetic energy
To solve this problem we will use the linear motion kinematic equations, for which the change of speed squared with the acceleration and the change of position. The acceleration in this case will be the same given by gravity, so our values would be given as,

Through the aforementioned formula we will have to

The particulate part of the rest, so the final speed would be



Now from Newton's second law we know that

Here,
m = mass
a = acceleration, which can also be written as a function of velocity and time, then

Replacing we have that,


Therefore the force that the water exert on the man is 1386.62
Answer:
32 amu is the right choice because both protons and neutrons have a mass of 1 amu. Electrons have no mass so go with the last choice
Answer:
C) 3,000 kg m/s
Explanation:
We can consider the horizontal velocity of the motorcycle to be zero, since it rolls off the edge of the cliff very slowly. So, we only need to find the vertical velocity at the time of the impact with the ground.
The vertical velocity of the motorcycle at time t is given by (free-fall motion):

where
is the initial vertical velocity (zero, since the motorcycle is not moving)
g = 9.8 m/s^2 is the acceleration due to gravity
t is the time
Since the motorcycle hits the ground after t = 3 seconds, we have

And since we know its mass, m=100 kg, we can find its momentum:

and the negative sign simply means downward direction.