Answer:
Capacitance of the second capacitor = 2C
Explanation:

Where A is the area, d is the gap between plates and ε₀ is the dielectric constant.
Let C₁ be the capacitance of first capacitor with area A₁ and gap between plates d₁.
We have

Similarly for capacitor 2

Capacitance of the second capacitor = 2C
Answer:
1.4 billion light years away
Explanation:
v = Recessional velocity = 30000 km/s[/tex]
= Hubble constant = 
D = Distance to the galaxy
According to Hubble's law

The galaxy is 1.4 billion light years away
<span>Her center of mass will rise 3.7 meters.
First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so
8.5 m / 9.8 m/s^2 = 0.867346939 s
And the distance a object under constant acceleration travels is
d = 0.5 A T^2
Substituting known values, gives
d = 0.5 9.8 m/s^2 (0.867346939 s)^2
d = 4.9 m/s^2 * 0.752290712 s^2
d = 3.68622449 m
Rounded to 2 significant figures gives 3.7 meters.
Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>
Answer:
Acceleration
Explanation:
The quantity of the rate of change of velocity is termed the acceleration of the body.
Acceleration is the rate of change of velocity with time;
A =
A is the acceleration
v is the final velocity
u is the initial velocity
t is the time taken