Answer:
The angle of projection is 12.26⁰.
Explanation:
Given;
initial position of the dart, h₀ = 1.50 m
height above the ground reached by the dart, h₁ = 1.73 m
maximum height reached by the dart, Hm = h₁ - h₀ = 1.73 m - 1.50 m= 0.23 m
velocity of the dart, u = 10 m/s
The maximum height reached by the projectile is calculated as;

where;
θ is angle of projection
g is acceleration due to gravity = 9.8 m/s²

Therefore, the angle of projection is 12.26⁰.
Answer:
According to Newton's 2nd law
The force acting on a body produces acceleration in its direction which is directly propotional to the force but inversly propotinal to the mass of tbe body.
Explanation:
a = F/m
F = ma
Where( F) is force (m) is mass and (a) is acceleration.
Answer:
B. - 0.328
Explanation
Potential Energy:<em> This is the energy of a body due to position.</em>
<em>The S.I unit of potential energy is Joules (J).</em>
<em>It can be expressed mathematically as</em>
<em>Ep = mgh........................... Equation 1</em>
<em>Where Ep = potential energy, m = mass of the coin, h = height, g = acceleration due to gravity,</em>
<em>Given: m = 2.74 g = 0.00274 kg, h = 12.2 m, g = 9.8 m/s²</em>
Substituting these values into equation 1
Ep = 0.00274×12.2×9.8
Ep = 0.328 J.
Note: Since the potential energy at the surface is zero, the potential Energy with respect to the surface = -0.328 J
The right option is B. - 0.328
<em />
To answer these questions just use the equations for potential energy using the mass and heights described. the potential energy at the prescribed heights = the initial kinetic energy required to reach that height.
Make sure you calculate the force of gravity on the surface using the radius of the planet.