Answer: anlien, enemy gnome, spaceship
Explanation:
Answer:
1800J
Explanation:
Step one:
given data
mass of bullet m= 3g= 0.03kg
initial velocity u = 400m/s
final velocity v= 200 m/s
Step two:
1.The bullet's lost kinetic energy went inside the tree.
2. The energy transferred is computed as
= initial KE- KE final
Initial KE= 1/2mu^2
Initial KE= 1/2*0.03*400^2
Initial KE= 1/2*0.03*160000
Initial KE= 1/2*4800
Initial KE= 2400J
KE final= 1/2mv^2
KE final= 1/2*0.03*200^2
KE final= 1/2*0.03*40000
KE final= 1/2*1200
KE final= 600J
KE transferred = 2400-600
KE transferred= 1800J
The motorist is traveling at 65 miles per hour
Force is directly proportional to mass according to the second law of Newton, meaning that the greater the mass is, bigger the force should be in order to move the object. In this case, Mutt's wagon has a mass two times greater than Jeff's and they have to be equal. So either Jeff must slow down twice as much or Mutt has to speed up twice as much. The only option we can choose according to our reasoning is that Mutt must use twice as much force to push his cart, because his mass is two times bigger. According to me the answer is C).