Answer:
- A) A = 27.3°, B = 56.1°, C = 96.6°
Step-by-step explanation:
<u>Use the Law of Cosines:</u>
- A = arccos [(b² + c² - a²)/(2bc)] = arccos [(13.2² + 15.8² - 7.3²)/(2*13.2*15.8)] = 27.3°
- B = arccos [(a² + c² - b²)/(2ac)] = arccos [(7.3² + 15.8² - 13.2²)/(2*7.3*15.8)] = 56.1°
- C = 180° - (A + B) = 180° - (27.3° + 56.1°) = 96.6°
Correct choice is A.
Let's make an equation. T will be the number.
(T+5)/4=7
Let's multiply both sides by 4 to get T by itself.
T+5=28
Subtract 5 from both sides.
T=23
Your number is 23.
The absolute value inequality can be decomposed into two simpler ones.
x < 0
x > -8
<h3>
</h3><h3>
Which two inequalities can be used?</h3>
Here we start with the inequality:
3|x + 4| - 5 < 7
First we need to isolate the absolute value part:
3|x + 4| < 7 + 5
|x + 4| < (7 + 5)/3
|x + 4| < 12/3
|x + 4| < 4
The absolute value inequality can now be decomposed into two simpler ones:
x + 4 < 4
x + 4 > - 4
Solving both of these we get:
x < 4 - 4
x > -4 - 4
x < 0
x > -8
These are the two inequalities.
Learn more about inequalities:
brainly.com/question/24372553
#SPJ1
That would be D
the first 3 = -12x + 24
bur D = -12x - 24
2x - 3 < 11 or 8x -10 < 82: <span>X < 23/2
<span>
Part 1</span>
</span>2x-3<11
Add 3 both sides
2x-3+3<11+3
Refine
2x<14
Divide by 2 on both sides
2x / 2 / 14 / 2
Refine
x < 7
<span>
Part 2</span>
8x-10<82
Add 10 to both sides
8x-10+10<82+10
Refine
8x<92
Divide by 8
8x / 8 / 92 / 8
Refine
x < 23 / 2