1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
3 years ago
9

Express the given quantity as a single logarithm and simplify: 3logx+2log(y-2)-5logx

Mathematics
1 answer:
storchak [24]3 years ago
3 0
Simplify each term<span>.</span>
Simplify <span>3log(x)</span><span> by moving </span>3<span> inside the </span>logarithm<span>. 
</span><span>log(<span>x^3</span>)+2log(y−1)−5log(x)</span><span> 
</span>
Simplify <span>2log(y−1)</span><span> by moving </span>2<span> inside the </span>logarithm<span>. 
</span><span>log(<span>x^3</span>)+log((y−1<span>)^2</span>)−5log(x)</span><span> 
</span>
Rewrite <span>(y−1<span>)^2</span></span><span> as </span><span><span>(y−1)(y−1)</span>.</span><span> 
</span><span>log(<span>x^3</span>)+log((y−1)(y−1))−5log(x)</span><span> 
</span>
Expand <span>(y−1)(y−1)</span><span> using the </span>FOIL<span> Method. 
</span><span>log(<span>x^3</span>)+log(y(y)+y(−1)−1(y)−1(−1))−5log(x)</span><span> 
</span>
Simplify each term<span>. 
</span><span>log(<span>x^3</span>)+log(<span>y^2</span>−2y+1)+log(<span>x^<span>−5</span></span>)</span><span> 

</span>Remove the negative exponent<span> by rewriting </span><span>x^<span>−5</span></span><span> as </span><span><span>1/<span>x^5</span></span>.</span><span> 
</span><span>log(<span>x^3</span>)+log(<span>y^2</span>−2y+1)+log(<span>1/<span>x^5</span></span>)</span><span> 
</span>
Combine<span> logs to get </span><span>log(<span>x^3</span>(<span>y^2</span>−2y+1))
</span><span>log(<span>x^3</span>(<span>y^2</span>−2y+1))+log(<span>1/<span>x^5</span></span>)

</span>Combine<span> logs to get </span><span>log(<span><span><span>x^3</span>(<span>y^2</span>−2y+1)/</span><span>x^5</span></span>)</span><span> 
</span>log(x^3(y^2−2y+1)/x^5)

Cancel <span>x^3</span><span> in the </span>numerator<span> and </span>denominator<span>. 
</span><span>log(<span><span><span>y^2</span>−2y+1/</span><span>x^2</span></span>)</span><span> 

</span>Rewrite 1<span> as </span><span><span>1^2</span>.</span> 
<span><span>y^2</span>−2y+<span>1^2/</span></span><span>x^2</span>

Factor<span> by </span>perfect square<span> rule. 
</span><span>(y−1<span>)^2/</span></span><span>x^2</span>

Replace into larger expression<span>. 
</span>
<span>log(<span><span>(y−1<span>)^2/</span></span><span>x^2</span></span>)</span> 
You might be interested in
Solve for X. show your work. (x+2)(x+8)=0
valentinak56 [21]

Step-by-step explanation:

x = -2

x = -8

please follow me

3 0
3 years ago
Question 1: Multiply and simplify.
andrew-mc [135]

Answer:

question 1 = x7 and question 2 = 24x^3+56x^2 I'm pretty sure

4 0
3 years ago
Can someone help me with this one question?
kondor19780726 [428]

Answer:

no...

Step-by-step explanation:

3 0
3 years ago
Find the equation of an exponential function in the form y = ab^x, given the points (0, 3) and (2, 108/25). Please simplify your
lilavasa [31]

We have the equation:

y=a\cdot b^x

We know two points and we will use them to calculate the parameters a and b.

The point (0,3) will let us know a, as b^0=1.

\begin{gathered} y=a\cdot b^x \\ 3=a\cdot b^0=a \\ a=3 \end{gathered}

Now, we use the point (2, 108/25) to calcualte b:

\begin{gathered} y=3\cdot b^x \\ \frac{108}{25}=3\cdot b^2 \\ 3\cdot b^2=\frac{108}{25} \\ b^2=\frac{108}{25\cdot3}=\frac{108}{3}\cdot\frac{1}{25}=\frac{36}{25} \\ b=\sqrt[]{\frac{36}{25}} \\ b=\frac{\sqrt[]{36}}{\sqrt[]{25}} \\ b=\frac{6}{5} \end{gathered}

Then, we can write the equation as:

y=3\cdot(\frac{6}{5})^x

5 0
1 year ago
Would someone please help me with this
Ipatiy [6.2K]

Answer:

12,000 m³

Step-by-step explanation:

  • Area of it's base = 900 m²
  • Height of the pyramid = 40 m

The volume of a pyramid = 1/3 × area of base × height

= 1/3 × 900 × 40

= 300 × 40

= 12,000 m³

4 0
3 years ago
Other questions:
  • The two-column proof below describes the statement and reason for proving that corresponding angles are congruent.
    5·2 answers
  • The sum of four consecutive odd numbers is 368 find the numbers​
    6·1 answer
  • Derivative of x(2x-3)^1/2
    13·2 answers
  • How many phone numbers are possible for one area code if the first four numbers are 202-1 , in that order , and the last three n
    13·1 answer
  • I need to know the answers ASAP
    11·1 answer
  • A warehouse store sells 6.5 ounce cans of tuna in packages of 5. A package of 5 cans cost $11.05. The store also sells 5.5 ounce
    7·1 answer
  • Please help me! This is a grade
    15·1 answer
  • What are the coordinates of the hole in the graph of the function?
    7·1 answer
  • What quantity of 75 per cent acid solution must be mixed with a 30 per cent solution to produce 1080 mL of a 50 per cent solutio
    11·1 answer
  • If 6 pairs of socks cost $6. 90, what is the price for one pair of socks
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!