Let's call a child's ticket
and an adult's ticket
. From this, we can say:
,
since 116 tickets are sold in total.
Now, we are going to need to find another equation (the problem asks us to solve a systems of equations). This time, we are not going to base the equation on ticket quantity, but rather ticket price. We know that an adult's ticket is $17,000, and a child's ticket is thus
.
Given these values, we can say:
,
since each adult ticket
costs 17,000 and each child's ticket
costs 12,750, and these costs sum to 1,653,250.
Now, we have two equations:


Let's solve:


- Find
on its own, which will allow us to substitute it into the first equation

- Substitute in
for 

- Apply the Distributive Property


- Subtract 1972000 from both sides of the equation and multiply both sides by -1

We have now found that 75 child's tickets were sold. Thus,
,
41 adult tickets were sold as well.
In sum, 41 adult tickets were sold along with 75 child tickets.
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
So 16 integers.
Answer:
C
Step-by-step explanation:
A and B would be very expensive for 2 people, and D is too little, so C would be sensible! Hope this helps!
Answer:
1.523
Step-by-step explanation:
1 mile equals 5280 feet
Answer:
y
=
2
x
−
1
Explanation:
First, we need to determine the slope of the line. The formula for determining the slope of a line is:
m
=
y
2
−
y
1
x
2
−
x
1
where
m
is the slope and the x and y terms are for the points:
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
For this problem the slope is:
m
=
3
−
−
1
2
−
0
m
=
3
+
1
2
m
=
4
2
m
=
2
Now, selecting one of the points we can use the point slope formula to find the equation.
The point slope formula is:
y
−
y
1
=
m
(
x
−
x
1
)
Substituting one of our points gives:
y
−
−
1
=
2
(
x
−
0
)
y
+
1
=
2
x
Solving for
y
to put this in standard form gives:
y
+
1
−
1
=
2
x
−
1
y
+
0
=
2
x
−
1
y
=
2
x
−
1
Answer linky
=
2
x
−
1
Explanation:
First, we need to determine the slope of the line. The formula for determining the slope of a line is:
m
=
y
2
−
y
1
x
2
−
x
1
where
m
is the slope and the x and y terms are for the points:
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
For this problem the slope is:
m
=
3
−
−
1
2
−
0
m
=
3
+
1
2
m
=
4
2
m
=
2
Now, selecting one of the points we can use the point slope formula to find the equation.
The point slope formula is:
y
−
y
1
=
m
(
x
−
x
1
)
Substituting one of our points gives:
y
−
−
1
=
2
(
x
−
0
)
y
+
1
=
2
x
Solving for
y
to put this in standard form gives:
y
+
1
−
1
=
2
x
−
1
y
+
0
=
2
x
−
1
y
=
2
x
−
1
Answer link